Refine Your Search

Topic

Search Results

Standard

Sizing of Emergency Braking Systems

2018-04-18
WIP
ARP6952
The pupose of this SAE AIR is to provide guidelines for sizing stored energy systems in use in emergency braking systems, in light of their intended purpose and applicable certification regulations.
Standard

Aircraft Brake Temperature Measurement

2017-10-26
WIP
ARP6812
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Brake Temperature Monitoring Systems (BTMS), and sometimes referred to as Brake Temperature Indication Systems (BTIS). The BTMS is limited to aircraft where a dispatch indication and brake temperature indication is required. The scope of this BTMS equipment shall be limited to the 1) brake temperature sensor or indicator, 2) temperature reference measurement, if required, and 3) processing and communication of brake temperature. This recommended practice will not address cockpit ergonomics and aircraft operating procedures.
Standard

Test Method for Catalytic Carbon Brake Disk Oxidation

2013-12-04
WIP
AS6289
The scope of the test method is to provide stakeholders including fluid manufacturers, brake manufacturers, aircraft constructors, aircraft operators and airworthiness authorities with a relative assessment of the effect of deicing chemicals on carbon oxidation. This test is designed to assess the relative effects of runway deicing chemicals by measuring mass change of contaminated and bare carbon samples tested under the same conditions.
Standard

Overpressurization Release Devices

1998-05-01
HISTORICAL
ARP1322A
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and test recommendations for aircraft tubeless tire and wheel overpressurization release devices to protect from possible explosive failure of the contained air chamber due to overinflation. This device will not protect against flash fire explosive conditions within the air chamber which may occur due to extremely overheated brakes. To protect against this condition, nitrogen or other inert gas should be used for inflation.
Standard

Overpressurization Release Devices

2009-08-04
HISTORICAL
ARP1322B
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and test recommendations for aircraft wheel overpressurization release devices used with tubeless aircraft tires to protect from possible explosive failure of the contained air chamber due to overinflation. Devices of this type provide a means, but not the only means, for showing compliance to Subsection 25.731(d) of Part 25 of Title 14 of the Code of Federal Regulations. Devices of this type will not protect against flash fire explosive conditions within the air chamber which may occur due to extremely overheated brakes. To help protect against this condition, nitrogen or other inert gas should be used for inflation.
Standard

OVERPRESSURIZATION RELEASE DEVICES

1975-01-01
HISTORICAL
ARP1322
This ARP specifies the minimum design and test recommendations for aircraft tubeless tire and wheel overpressurization release devices to protect from possible explosive failure of the contained air chamber due to overinflation. This device will not protect against flash fire explosive conditions within the air chamber which may occur due to extremely overheated brakes. To protect against this condition, nitrogen or other inert gas should be used for inflation.
Standard

Overpressurization Release Devices

2018-06-21
CURRENT
ARP1322C
This SAE Aerospace Recommended Practice (ARP) specifies the minimum design and qualification test recommendations for aircraft wheel overpressurization release devices used with tubeless aircraft tires to protect from possible explosive failure of the contained inflation chamber due to overinflation. Devices of this type provide a means, but not the only means, for showing compliance to Subsection 25.731(d) of Part 25 of Title 14 of the Code of Federal Regulations. Devices of this type will not protect against flash fire explosive conditions within the inflation chamber which may occur due to extremely overheated brakes or spontaneous combustion caused by a foreign substance within the inflation chamber. To help protect against this condition, nitrogen (N2) or other inert gas should be used for inflation.
Standard

Replacement and Modified Brakes and Wheels

2016-10-21
CURRENT
ARP1619B
This SAE Aerospace Recommended Practice (ARP) defines recommended planning and substantiation procedures and associated reviewing and approval processes to confirm that proposed changes do not compromise the demonstrated safety of the originally certified aircraft, and performance and aircraft compatibility are appropriately addressed in aircraft documentation. Successful demonstration also requires that failure modes be identified and mitigation provided for each. These procedures apply to modifications made by the original component or assembly supplier as well as approval of an alternate supplier.
Standard

Thermal Sensitive Inflation Pressure Release Devices for Tubeless Aircraft Wheels

1982-04-01
HISTORICAL
AS707A
This standard establishes minimum design, installation, qualification, and operational requirements for thermally actuated, pressure release devices for use only in tubeless tire type aircraft wheels. These devices are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the assembly to exceed a safe temperature operating level. The objective is to prevent tire or wheel rupture from brake generated heat which could cause serious personnel injuries or serious aircraft operational hazards.
Standard

Thermal Sensitive Inflation Pressure Release Devices for Tubeless Aircraft Wheels

2013-11-01
CURRENT
AS707C
The focus of this SAE Aerospace Standard (AS) is the integration of thermally actuated pressure release devices, hereafter referred to as fuse plugs, with the wheel and brake assembly. It does not address the manufacturing, quality or acceptance test requirements pertaining to the production of these fuse plugs. It establishes minimum design, installation, qualification, and operational requirements for fuse plugs which are used only in tubeless tire type aircraft braked wheels. Fuse plugs are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the tire or wheel to exceed a safe temperature level. The objective is to prevent tire or wheel rupture due to brake generated heat that could cause an unsafe condition for personnel or the aircraft. (Reference: U.S. Department of Transportation FAA Advisory Circular No. 23-17C; Title 14, Code of Federal Regulations (14 CFR) Part 25.735 (j); U.S.
Standard

Thermal Sensitive Inflation Pressure Release Devices for Tubeless Aircraft Wheels

1988-12-01
HISTORICAL
AS707
The focus of this SAE Aerospace Standard (AS) is the integration of thermally actuated pressure release devices, hereafter referred to as fuse plugs, with the wheel and brake assembly. It does not address the manufacturing, quality or acceptance test requirements pertaining to the production of these fuse plugs. It establishes minimum design, installation, qualification, and operational requirements for fuse plugs which are used only in tubeless tire type aircraft braked wheels. Fuse plugs are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the tire or wheel to exceed a safe temperature level. The objective is to prevent tire or wheel rupture due to brake generated heat that could cause an unsafe condition for personnel or the aircraft. (Reference: U.S. Department of Transportation FAA Advisory Circular No. 23-17C; Title 14, Code of Federal Regulations (14 CFR) Part 25.735 (j); U.S.
Standard

Thermal Sensitive Inflation Pressure Release Devices for Tubeless Aircraft Wheels

1988-12-01
HISTORICAL
AS707B
This standard establishes minimum design, installation, qualification, and operational requirements for thermally actuated, pressure release devices for use only in tubeless tire type aircraft wheels. These devices are designed to completely release the contained inflation pressure from a tubeless tire and wheel assembly when brake generated heat causes the assembly to exceed a safe temperature operating level. The objective is to prevent tire or wheel rupture from brake generated heat which could cause serious personnel injuries or serious aircraft operational hazards.
Standard

Wheel and Brake (Sand and Permanent Mold) Castings - Minimum Requirements for Aircraft Applications

1996-08-01
HISTORICAL
AS586A
This SAE Aerospace Standard (AS) sets forth the minimum quality required for aircraft wheel and brake castings. Its use will establish minimum acceptable requirements for internal structure and surface conditions and is predicated on the use of a casting factor for the ultimate load of more than 1.51 through 2.00. When casting factors of 1.25 through 1.50 are used, visual, penetrant, and radiographic or other approved equivalent nondestructive inspection methods shall all be required on each production casting. Where specific parts, or areas of parts, require a quality level exceeding that described by this document, the requirements shall be established by negotiation between the purchaser and vendor.
Standard

Wheel and Brake (Sand and Permanent Mold) Castings - Minimum Requirements for Aircraft Applications

2005-01-05
HISTORICAL
AS586B
This SAE Aerospace Standard (AS) sets forth the minimum quality required for aircraft wheel and brake castings. Its use will establish minimum acceptable requirements for internal structure and surface conditions and is predicated on the use of a casting factor for the ultimate load of more than 1.51 through 2.00. When casting factors of 1.25 through 1.50 are used, visual, penetrant, and radiographic or other approved equivalent nondestructive inspection methods shall all be required on each production casting. Where specific parts, or areas of parts, require a quality level exceeding that described by this document, the requirements shall be established by negotiation between the purchaser and vendor.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2016-09-14
CURRENT
AS1145C
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

AIRCRAFT BRAKE TEMPERATURE MONITOR SYSTEMS (BTMS)

1992-06-01
HISTORICAL
AS1145A
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

1998-02-01
HISTORICAL
AS1145B
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
X