Refine Your Search

Topic

Search Results

Standard

Verification of Landing Gear Design Strength

2007-07-09
HISTORICAL
AIR1494A
Verification of landing gear design strength is accomplished by dynamic and static test programs. This is essentially a verification of the analytical procedures used to design the gear. An industry survey was recently conducted to determine just what analysis and testing are currently being applied to landing gear. Timing in relation to first flight of new aircraft was also questioned. Opinions were solicited from designers of the following categories and/or types of aircraft: a Military - Large Land Based (Bomber) b Military - Small Land Based (Fighter) c Military - Carrier Based (Navy) d Military - Helicopter (Large) e Military - Helicopter (Small-attack) f Commercial - Large (Airliner) g Commercial - Small (Business) h USAF (WPAFB) - Recommendations It is the objective of this AIR to present a summary of these responses. It is hoped that this summary will be useful to designers as a guide and/or check list in establishing criteria for landing gear analysis and test.
Standard

Extraordinary and Special Purpose Landing Gear Systems

2006-05-19
HISTORICAL
AIR4846
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee.
Standard

Extraordinary and Special Purpose Landing Gear Systems

2012-10-03
CURRENT
AIR4846A
A landing gear system comprises the most compelling assembly of engineering skills. Its importance to the successful design of an aircraft can be favorably compared with that of the aircraft's wings and engines. A landing gear system consists of several different engineering disciplines, and is continually in the public eye especially with regard to safety. The primary objective of AIR4846 is to present a record of a variety of interesting gears, gear/aircraft systems and patents, and to discuss wherever possible the lessons learned, and the reasons for the design. Thus, the document is not only a historical account, but a means of recording technical knowledge for the practical benefit of future landing gear designers. Commendable efforts have been made over the years by several individuals to make such recordings, and AIR4846 will make continual reference to them. This applies to all books, papers, or specifications that have the approval of the SAE A-5 Committee.
Standard

Recommended Actions When Disinfectants, De-icers, and Cleaners Come in Contact with Landing Gear Structure

2006-04-20
HISTORICAL
AIR5541
This SAE Aerospace Information Report (AIR) advises that some of the chemicals being used to disinfect, de-ice, and clean airplanes can cause corrosion and/or degradation of landing gear components. Landing gear equipment includes shock struts, braces, actuators, wheels, brakes, tires, and electrical components. Some of the chemicals that have been recognized as potentially injurious are identified and recommendations for mitigating damage are presented.
Standard

Recommended Actions When Disinfectants, De-icers, and Cleaners Come in Contact with Landing Gear Structure

2012-10-03
CURRENT
AIR5541A
This SAE Aerospace Information Report (AIR) advises that some of the chemicals being used to disinfect, de-ice, and clean airplanes can cause corrosion and/or degradation of landing gear components. Landing gear equipment includes shock struts, braces, actuators, wheels, brakes, tires, and electrical components. Some of the chemicals that have been recognized as potentially injurious are identified and recommendations for mitigating damage are presented.
Standard

AIRCRAFT TAIL BUMPERS

1984-09-01
HISTORICAL
AIR1800
This document covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions.
Standard

Aircraft Tail Bumpers

2021-06-22
CURRENT
AIR1800B
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions.
Standard

Aircraft Tail Bumpers

2021-02-03
HISTORICAL
AIR1800A
This SAE Aerospace Information Report (AIR) covers the field of civilian, commercial and military airplanes and helicopters. This summary of tail bumper design approaches may be used by design personnel as a reference and guide for future airplanes and helicopters that require tail bumpers. Those described herein will consist of simple rub strips, structural loops with a wear surface for runway contact, retractable installations with replaceable shock absorbers and wear surfaces and complicated retractable tail landing gears with shock strut, wheels and tires. The information will be presented as a general description of the installation, its components and their functions.
Standard

Landing Gear Retraction / Extension Systems

2008-05-14
WIP
ARP5569
This Aerospace Recommended Practice (ARP) will cover normal and emergency landing gear retraction/extension systems. This includes all equipment necessary for the control and sensing of the components used for raising and lowering the gear, up-locking and down-locking the gear, opening and closing the associated landing gear doors, and any latching of this equipment. The document will provide recommended practices for the use of conventional technologies and for those newer technologies now coming into use. It will include the regulatory and other safety requirements for these systems together with recommendations for; sequencing and timing, sensor selection, and failure monitoring of both normal and emergency operation and the support of maintenance and test needs.
Standard

Landing Gear Fatigue Spectrum Development For Part 25 Aircraft

2020-02-28
CURRENT
AIR5914
This SAE Aerospace Information Report (AIR) provides guidelines for the development of landing gear fatigue spectra for the purpose of designing and certification testing of Part 25 landing gear. Many of the recommendations herein are generalizations based on data obtained from a wide range of landing gears. The aircraft manufacturer or the landing gear supplier is encouraged to use data more specific to their particular undercarriage whenever possible.
Standard

Landing Gear Shock Absorption Testing of Civil Aircraft

2020-07-14
CURRENT
ARP5644A
The intent of this document is to provide recommended practices for conducting shock absorption testing of civil aircraft landing gear equipped with oleo-pneumatic shock absorbers. The primary focus is for Part 25 aircraft, but differences for Part 23, 27, and 29 aircraft are provided where appropriate.
Standard

Tail Bumpers for Piloted Aircraft

2017-07-14
CURRENT
ARP1107C
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

TAIL BUMPERS FOR PILOTED AIRCRAFT

1971-07-01
HISTORICAL
ARP1107
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

TAIL BUMPERS FOR PILOTED AIRCRAFT

1991-06-11
HISTORICAL
ARP1107A
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

Tail Bumpers for Piloted Aircraft

2012-05-03
HISTORICAL
ARP1107B
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

Historical Design Information of Aircraft Landing Gear and Control Actuation Systems

2022-09-08
CURRENT
AIR5565
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems. The report is divided into two basic sections: 1 Landing gear actuation system history from 1876 to the present. This section provides an overview and the defining examples that demonstrate the evolution of landing gear actuation systems to the present day. 2 This section of the report provides an in depth review of various aircraft. A summary table of aircraft detail contained within this section is provided in paragraph 4.1. The intent is to add new and old aircraft retraction/extension systems to this AIR as the data becomes available.
Standard

Landing Gear Structural Health Monitoring

2012-04-12
HISTORICAL
AIR6168
This SAE Aerospace Information Report (AIR) discusses past and present approaches for monitoring the landing gear structure and shock absorber, methods for transient overload detection, techniques for measuring the forces seen by the landing gear structure, and methods for determining the fatigue state of the landing gear structure. This AIR covers the landing gear structure and shock absorber. It does not include the landing gear systems or landing gear wheels, tires and brakes. Landing gear tire condition and pressure monitoring are detailed in AIR4830 and ARP6137, respectively.
Standard

Information on Hard Landings

2016-11-11
HISTORICAL
AIR5938
This document provides information on the current practices used by commercial and military operators in regards to hard landings (or overload events designated as hard landings). Since detailed information on inspections would be aircraft specific, this AIR provides only a general framework. Detailed information and procedures are available in the maintenance manuals for specific aircraft. Because hard landings potentially affect the entire aircraft, guidelines are listed here for non-landing gear areas. But, the primary focus of the document is the landing gear and related systems. The document may be considered to be applicable to all types of aircraft. This document does NOT provide recommended practices for hard landing inspections, nor does it provide recommendations on the disposition of damaged equipment. Refer to ARP 4915 and ARP 5600.
Standard

Information on Hard Landings and Abnormal Landing Gear Loading Events

2022-12-20
CURRENT
AIR5938A
The primary focus of this document is to provide information on the impacts hard landings and abnormal load conditions on landing gear and related systems. However, because hard landings potentially affect the entire aircraft, this document also includes information for non-landing gear areas. The document may be considered to be applicable to all types of aircraft. This document does NOT provide recommended practices for hard landing inspections, nor does it provide recommendations on the disposition of damaged equipment. Refer to ARP4915 and ARP5600 for information on dispositions relating to landing gear components or wheels involved in accidents/incidents.
X