Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Standard

Skew and Disconnect Detection in High Lift Systems

2021-09-09
WIP
ARP5775
The document provides a definition of skew and disconnect occuring in high lift systems in flight controls including their hazard assessment, describes generic solutions and provides a for specifying requirements.
Standard

Design and Test Recommendations for Dielectric Strength and Insulation Resistance for Line Replaceable Units

2021-04-26
WIP
ARP5769
Scope: This Aerospace Recommended Practice (ARP) provides guidelines for specifying dielectric withstanding strength and insulation resistance design and test requirements for aircraft line replaceable units (LRU's) used within a flight control and/or a utility system. 1.1 Purpose The testing is intended to verify that an LRU can operate safely at its rated voltage and withstand momentary over potentials due to switching, troubleshooting testing, surges, etc.. The testing is also intended to verify adequate design margin of the insulation system and detect workmanship problems.
Standard

FLUIDIC TECHNOLOGY

1995-06-01
HISTORICAL
ARP993
The scope of this document is limited to encompass terminology, symbols, performance criteria and certain elementary test methods reflecting the current status of the technology.
Standard

FLUIDIC TECHNOLOGY

2011-08-10
HISTORICAL
ARP993A
The scope of this document is limited to encompass terminology, symbols, performance criteria and certain elementary test methods reflecting the current status of the technology.
Standard

Utility System Characterization, An Overview

2021-02-23
WIP
AIR5428A
Modern air vehicles consist of many subsystems, traditionally managed as a federation of independent subsystems. Advances in control technologies, digital electronics and electro-mechanical hardware, provide potential opportunities to integrate subsystems for future aircraft. This document does not define any particular integration strategy. Its purpose is to provide information about traditional federated subsystems from the functional, control, resource, and hardware perspective. To be able to integrate subsystems, one must have a basic understanding of the subsystems, and this document provides an introduction or starting point for initiating the integration process.
Standard

Aerospace Fly-by-Light Actuation Systems

2007-01-11
HISTORICAL
AIR4982
This SAE Aerospace Information Report (AIR) has been prepared to provide information regarding options for optical control of fluid power actuation devices. It is not intended to establish standards for optical fluid power control, but rather is intended to provide a baseline or foundation from which standards can be developed. It presents and discusses approaches for command and communication with the actuation device via electro-optic means. The development of standards will require industry wide participation and cooperation to ensure interface commonality, reliability, and early reduction to practice. To facilitate such participation, this document provides potential users of the technology a balanced consensus on its present state of development, the prospects for demonstration of production readiness, and a discussion of problem areas within this technology.
Standard

Aerospace Fly-by-Light Actuation Systems

2014-12-18
CURRENT
AIR4982A
This SAE Aerospace Information Report (AIR) has been prepared to provide information regarding options for optical control of fluid power actuation devices. It is not intended to establish standards for optical fluid power control, but rather is intended to provide a baseline or foundation from which standards can be developed. It presents and discusses approaches for command and communication with the actuation device via electro-optic means. The development of standards will require industry wide participation and cooperation to ensure interface commonality, reliability, and early reduction to practice. To facilitate such participation, this document provides potential users of the technology a balanced consensus on its present state of development, the prospects for demonstration of production readiness, and a discussion of problem areas within this technology.
Standard

AEROSPACE FLUID POWER AND CONTROL/ACTUATION SYSTEM GLOSSARY

1985-10-01
HISTORICAL
AIR1916
General terms peculiar to aerospace fluid power and control systems are defined in this glossary. Relevant terms have been excerpted from the referenced documents and included herein from the aerospace terms felt to be most useful to the ISO. This is a systems document and the only component-related terms are those significant at the systems level.
Standard

Utility System Characterization, an Overview

2013-05-28
CURRENT
AIR5428
Modern air vehicles consist of many subsystems, traditionally managed as a federation of independent subsystems. Advances in control technologies, digital electronics and electro-mechanical hardware, provide potential opportunities to integrate subsystems for future aircraft. This document does not define any particular integration strategy. Its purpose is to provide information about traditional federated subsystems from the functional, control, resource, and hardware perspective. To be able to integrate subsystems, one must have a basic understanding of the subsystems, and this document provides an introduction or starting point for initiating the integration process. The focus is on the aircraft subsystems, which includes utility, flight and propulsion control (e.g., electric power, environmental control subsystem (ECS), fuel, etc.) The depth of the information intends to provide an introduction to the subsystems.
Standard

Descriptions of Systems Integration Test Rigs (Iron Birds) for Aerospace Applications

2023-04-26
CURRENT
AIR5992
This Aerospace Information Report (AIR) provides information on systems integration rigs, commonly referred to as “Iron Birds” for aerospace applications. a It includes background historical information including descriptions of Iron Birds produced to date, important component elements and selection rationale, hydraulic system design and operational modes and illustrates the design approaches to be considered. b It provides illustrations of the various systems that should be considered for Iron Bird testing in the development phase and utilization during the production program. c It includes recommendations for simulation, component development tests, system integration and lessons learned.
Standard

Integrated Rudder and Brake Pedal Unit, General Requirements for Fly-By Wire Transport and Business Aircraft

2023-10-23
WIP
ARP6252A
This Aerospace Recommended Practice (ARP) provides general requirements for a generic, integrated rudder and brake pedal unit, incorporating a passive force-feel system that could be used for fixed-wing fly-by wire transport and business aircraft.This ARP addresses the following:- The functions to be implemented- The mechanical interconnection between captain and F/O station- The geometric and mechanical characteristics- The mechanical, electrical, and electronic interfaces- The safety and certification requirements
Standard

Aircraft Flight Control Actuation System Failure-Detection Methods

2022-12-16
CURRENT
AIR5273A
This SAE Aerospace Information Report (AIR) provides descriptions of aircraft flight control actuation system failure-detection methods. The fault-detection methods are those used for ground and in-flight detection of failures in electrohydraulic actuation systems for primary flight controls.
Standard

Aircraft Flight Control Systems Descriptions

2022-10-05
WIP
AIR4094B
This SAE Aerospace Information Report (AIR) supplies information on the flight control systems incorporated on various current and historic fixed wing, rotary wing, and tilt rotor aircraft. A brief description of the aircraft is followed by a description of the flight control system, some specific components, drawings of the internal arrangement, block diagrams, and schematics. System operation redundancy management is also presented.
Standard

Aircraft Flight Control Systems Descriptions

2016-07-18
CURRENT
AIR4094A
This SAE Aerospace Information Report (AIR) supplies information on the flight control systems incorporated on various current and historic fixed wing, rotary wing, and tilt rotor aircraft. A brief description of the aircraft is followed by a description of the flight control system, some specific components, drawings of the internal arrangement, block diagrams, and schematics. System operation redundancy management is also presented.
Standard

AIRCRAFT FLIGHT CONTROL SYSTEMS DESCRIPTIONS

1994-05-01
HISTORICAL
AIR4094
This Aerospace Information Report (AIR) supplies information on the flight control systems incorporated on various aircraft. A brief description of the aircraft is followed by a description of the flight control system, some specific components, drawings of the internal arrangement, block diagrams, and schematics. System operation redundancy management is also presented.
Standard

AEROSPACE - FLIGHT CONTROL ACTUATOR DISPLACEMENT - METHOD FOR COLLECTION OF DUTY CYCLE DATA

1994-05-01
HISTORICAL
ARP4895
The scope of this SAE Aerospace Recommended Practice (ARP) covers acquisition of flight test data for use in developing a statistical data base of aerospace vehicle flight control surface actuator duty cycle. The statistical data base is intended for use in establishing industry guidelines and procurement specification requirements for actuator displacement duty cycle. The objective of this ARP is to provide a uniform method for the aerospace industry to collect flight control displacement type duty cycle data during demonstration and full scale development of new aircraft or during development testing of new models of existing aircraft.
Standard

Vehicle Management Systems - Flight Control Function, Design, Installation and Test of Piloted Military Aircraft, General Specification For

2024-04-16
WIP
AS94900B
This SAE Aerospace Standard (AS) provides the general performance, design, installation, test, development, and quality assurance requirements for the flight control related functions of the Vehicle Management Systems (VMS) of military piloted aircraft. It also provides specification guidance for the flight control interfaces with other systems and subsystems of the aircraft.
X