Refine Your Search

Topic

Search Results

Standard

Environmental Control Systems (ECS) for UA (Unmanned Aircraft)

2022-06-24
WIP
AIR7063
This document provides guidance for establishing ECS for UA by primarily referencing existing AC-9 documents that apply with some indication how they need to be adapted. The document primarily addresses cooling requirements for UA equipment. Limited information is provided for ECS requirements for future UA that may carry passengers. The document does not intend to provide detail design guidance for all types of UA. This document only provides guidance related to environmental control of onboard equipment, cargo and possible animals and passengers. It does not pertain to the related ground stations that may be controlling the UA.
Standard

Spacecraft Life Support Systems

2011-06-20
HISTORICAL
AIR1168/14
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management.
Standard

Aircraft Electrical Heating Systems

2011-10-17
CURRENT
AIR860B
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only. No attempt has been made to develop the complete electrical circuitry associated with the electrical heating components; however, the electrical circuitry required for heating component operation, safety, and monitoring will be included as available. Specific design information is given for various modern aircraft utilizing electrical heating. Each aircraft discussed will be identified by alphabetical letter designation and included in the appropriate appendix.
Standard

Aircraft Electrical Heating Systems

2006-03-24
HISTORICAL
AIR860A
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only. No attempt has been made to develop the complete electrical circuitry associated with the electrical heating components; however, the electrical circuitry required for heating component operation, safety, and monitoring will be included as available. Specific design information is given for various modern aircraft utilizing electrical heating. Each aircraft discussed will be identified by alphabetical letter designation and included in the appropriate appendix.
Standard

AIRCRAFT ELECTRICAL HEATING SYSTEMS

1992-03-01
HISTORICAL
AIR860
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only.
Standard

AIR CONDITIONING OF AIRCRAFT CARGO

1978-07-01
HISTORICAL
AIR806A
The report presents air conditioning data for aircraft cargo which is affected by temperature, humidity, ventilation rate and atmospheric pressure. The major emphasis is on conditioning of perishable products and warm-blooded animals. The report also covers topics peculiar to cargo aircraft or which are related to the handling of cargo.
Standard

Air Conditioning of Aircraft Cargo

2020-05-12
CURRENT
AIR806B
The report presents air conditioning data for aircraft cargo which is affected by temperature, humidity, ventilation rate and atmospheric pressure. The major emphasis is on conditioning of perishable products and warm-blooded animals. The report also covers topics peculiar to cargo aircraft or which are related to the handling of cargo.
Standard

AIR CONDITIONING, HELICOPTER, GENERAL REQUIREMENTS FOR

1970-10-26
HISTORICAL
ARP292B
These recommendations are written to cover the general requirements of helicopter air conditioning and are sub-divided as follows: (1) Air Conditioning System - Dealing with the general design aspects. (2) Air Conditioning Equipment - Design requirements for satisfactory system function and performance. (3) Air Conditioning System Design Requirements -General information for use of those concerned in meeting requirements contained herein.
Standard

Aircraft Humidification

2021-01-14
CURRENT
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Fault Isolation in Environmental Control Systems of Commercial Transports

2021-01-12
CURRENT
AIR1266B
This SAE Aerospace Information Report (AIR) outlines concepts for the design and use of fault isolation equipment that have general application. The specific focus is on fault isolation of environmental control systems (ECS) in commercial transports. Presented are general fault isolation purposes, design principles, and demonstration of compliance criteria. These are followed by three design examples to aid in understanding the design principles. Future trends in built-in-test-equipment (BITE) design are discussed, some of which represent concepts already being implemented on new equipment.
Standard

The Control of Excess Humidity in Avionics Cooling

2020-05-12
CURRENT
ARP987B
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
Standard

ENVIRONMENTAL CONTROL SYSTEMS TERMINOLOGY

1997-10-01
HISTORICAL
ARP147D
This SAE Aerospace Recommended Practice (ARP) provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms.
Standard

Environmental Control Systems Terminology

2017-06-20
CURRENT
ARP147E
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms.
Standard

TESTING OF PROTOTYPE AIRPLANE AIR CONDITIONING SYSTEMS

1960-03-01
HISTORICAL
ARP217A
These recommendations are written to cover the testing of air conditioning equipment functioning as a complete and installed system in prototype civil aircraft for the purpose of: A Demonstrating the safety of the installation and equipment. B Demonstrating performance of the installation and equipment. a Source of heat b Source of fresh air and/or ventilation c The cooling system d Distribution system including ducting, joints, etc. e Water separator f Exhaust system g Temperature control system. h Cabin pressurisation system including flow and pressure controls. C Obtaining data for future design and to aid in the analysis of in-service performance of the systems and equipment.
X