Refine Your Search

Topic

Search Results

Standard

GUIDE FOR PREPARING AN ECS COMPUTER PROGRAM USER'S MANUAL

1980-06-01
HISTORICAL
ARP1623
These recommendations apply to the user's manual for any computer program pertaining to aircraft ECS. This includes computer programs for: a Cabin air conditioning and pressurization performance. b Avionics equipment cooling system performance. c Engine bleed air system performance. d Compartment and equipment thermal analysis. e Environmental protection system performance. These recommendations apply to user's manuals for generalized computer programs as well as those for a specific component or system.
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC, AIRCRAFT COMPARTMENT

1992-03-01
HISTORICAL
ARP89C
The recommendations of this ARP are primarily intended to be applicable to temperature control of compartments, occupied or unoccupied, of civil aircraft whose prime function is the transporting of passengers or cargo. The recommendations will apply, however, to a much broader category of civil and military aircraft where automatic temperature control systems are applicable.
Standard

Air Cycle Air Conditioning Systems for Air Vehicles

2019-08-20
CURRENT
AS4073B
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Standard

Air Cycle Air Conditioning Systems for Military Air Vehicles

2000-03-01
HISTORICAL
AS4073
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E (AS) and MIL-E-87145 (USAF). Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Standard

Aircraft Humidification

2015-11-09
HISTORICAL
AIR1609A
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Aircraft Humidification

2021-01-14
CURRENT
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

Spacecraft Thermal Balance

2004-09-08
HISTORICAL
AIR1168/12
In the design of spacecraft, heat transfer becomes a criterion of operation to maintain structural and equipment integrity over long periods of time. The spacecraft thermal balance between cold space and solar, planetary, and equipment heat sources is the means by which the desired range of equipment and structural temperatures are obtained. With the total spacecraft balance set, subsystem and component temperatures can be analyzed for their corresponding thermal requirements. This section provides the means by which first-cut approximations of spacecraft surface, structure, and equipment temperatures may be made, using the curves of planetary and solar heat flux in conjunction with the desired coating radiative properties. Once the coating properties have been determined, the material to provide these requirements may be selected from the extensive thermal radiative properties tables and curves.
Standard

Spacecraft Thermal Balance

2011-07-25
CURRENT
AIR1168/12A
In the design of spacecraft, heat transfer becomes a criterion of operation to maintain structural and equipment integrity over long periods of time. The spacecraft thermal balance between cold space and solar, planetary, and equipment heat sources is the means by which the desired range of equipment and structural temperatures are obtained. With the total spacecraft balance set, subsystem and component temperatures can be analyzed for their corresponding thermal requirements. This section provides the means by which first-cut approximations of spacecraft surface, structure, and equipment temperatures may be made, using the curves of planetary and solar heat flux in conjunction with the desired coating radiative properties. Once the coating properties have been determined, the material to provide these requirements may be selected from the extensive thermal radiative properties tables and curves.
Standard

Engineering Analysis System (EASY) Computer Program for Dynamic Analysis of Aircraft ECS

2003-10-31
HISTORICAL
AIR1823A
The Engineering Analysis SYstem (EASY) computer program is summarized in this report. It provides techniques for analysis of steady-state and dynamic (transient) environmental control system (ECS) performance, control system stability, and for synthesis of optimal ECS. General uses of a transient analysis computer program for ECS design and development, and general features of EASY relative to these uses, are presented. This report summarizes the nine analysis options of EASY, EASY program organization for analyzing ECS, data input to the program and resulting data output, and a discussion of EASY limitations. Appendices provide general definitions for dynamic analysis, and samples of input and output for EASY.
Standard

ENVIRONMENTAL CONTROL SYSTEM TRANSIENT ANALYSIS COMPUTER PROGRAM (EASY)

2011-08-10
HISTORICAL
AIR1823
The Environmental Control Analysis SYstem (EASY) computer program is summarized in this report. Development of this computer program initially was sponsored by the U.S. Air Force Flight Dynamics Laboratory. (See References 1, 2, 3, and 4.) It provides techniques for determination of steady state and dynamic (transient) ECS performance, and of control system stability; and for synthesis of optimal ECS control systems. The program is available from the U.S. Air Force, or as a proprietary commercial version. General uses of a transient analysis computer program for ECS design and development, and general features of EASY relative to these uses, are presented. This report summarizes the nine analysis options of EASY, EASY program organization for analyzing ECS, data input to the program and resulting data output, and a discussion of EASY limitations. Appendices provide general definitions for dynamic analysis, and samples of input and output for EASY.
Standard

Environmental Control Systems Terminology

2017-06-20
CURRENT
ARP147E
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms.
Standard

HEATER, AIRPLANE, EXHAUST HOT AIR TYPE

1943-01-01
HISTORICAL
ARP86
These specifications are written to cover the subject of exhaust hot air type heaters under three classifications, namely. A EXHAUST HOT AIR TYPE HEATERS - GENERAL - Dealing with features applicable to all makes and users. B EXHAUST HOT AIR TYPE HEATERS - MILITARY AND COMMERCIAL -Covering features applicable to military and commercial aircraft. C DESIRABLE DESIGN FEATURES - General information for use of those concerned with meeting requirements contained herein.
Standard

Environmental Systems Schematic Symbols

2015-10-16
HISTORICAL
ARP780B
This SAE Aerospace Recommended Practice (ARP) provides symbols to schematically represent aerospace vehicle environmental system components on functional flow schematic drawings and graphical computerized output. The symbols are for use on simplified diagrams that provide basic information about an environmental system. Symbols are provided to represent basic types of components used in environmental systems. Simple variations of basic symbol types are provided. Words on the schematic diagram, special symbol codes, or symbols that combine basic symbol types (Section 5) can be used to augment the basic symbols when appropriate. Special or combined symbols not contained in this document should be defined on the schematic diagram. An example of a complete schematic is given in Section 6. A bibliography of other documents on environmental system symbols is found in Appendix A.
Standard

Environmental Systems Schematic Symbols

2020-05-20
CURRENT
ARP780C
This SAE Aerospace Recommended Practice (ARP) provides symbols to schematically represent aerospace vehicle environmental system components on functional flow schematic drawings and graphical computerized output. The symbols are for use on simplified diagrams that provide basic information about an environmental system. Symbols are provided to represent basic types of components used in environmental systems. Simple variations of basic symbol types are provided. Words on the schematic diagram, special symbol codes, or symbols that combine basic symbol types (Section 5) can be used to augment the basic symbols when appropriate. Special or combined symbols not contained in this document should be defined on the schematic diagram. An example of a complete schematic is given in Section 6. A bibliography of other documents on environmental system symbols is found in Appendix A.
Standard

Heater, Aircraft Internal Combustion Heat Exchanger Type

2008-11-06
HISTORICAL
AS8040A
This SAE Aerospace Standard (AS) covers internal combustion heat exchanger type heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

HEATER, AIRCRAFT INTERNAL COMBUSTION HEAT EXCHANGER TYPE

1988-02-01
HISTORICAL
AS8040
This standard covers internal combustion heat exchanger type heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

Liquid Cooling Systems

2016-09-10
WIP
AIR1811B
The purpose of this Aerospace Information Report (AIR) is to provide guidelines for the selection and design of airborne liquid cooling systems. This publication is applicable to liquid cooling systems of the closed loop type and the expendable coolant type in which the primary function is transporting of heat from its source to a heat sink. Most liquid cooling system applications are oriented toward the cooling of electronics. Liquid cooling techniques, heat sinks, design features, selection of coolants, corrosion control, and servicing requirements for these systems are presented. Information on vapor compression refrigeration systems, which are a type of cooling system, is found in Reference 1.
Standard

EQUIPMENT COOLING IN PRESENT AND IMMEDIATE FUTURE CIVIL TRANSPORT AIRCRAFT

1956-12-01
HISTORICAL
AIR64
This AIR is intended as a status report on the work of E.C.S. to date in dealing with the problem of equipment cooling in present and immediate future civil transport aircraft. Subsequent revisions to this AIR will follow as more information is gathered on this subject.
X