Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Standard

GUIDE FOR PREPARING AN ECS COMPUTER PROGRAM USER'S MANUAL

1980-06-01
HISTORICAL
ARP1623
These recommendations apply to the user's manual for any computer program pertaining to aircraft ECS. This includes computer programs for: a Cabin air conditioning and pressurization performance. b Avionics equipment cooling system performance. c Engine bleed air system performance. d Compartment and equipment thermal analysis. e Environmental protection system performance. These recommendations apply to user's manuals for generalized computer programs as well as those for a specific component or system.
Standard

Aircraft Electrical Heating Systems

2011-10-17
CURRENT
AIR860B
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only. No attempt has been made to develop the complete electrical circuitry associated with the electrical heating components; however, the electrical circuitry required for heating component operation, safety, and monitoring will be included as available. Specific design information is given for various modern aircraft utilizing electrical heating. Each aircraft discussed will be identified by alphabetical letter designation and included in the appropriate appendix.
Standard

Aircraft Electrical Heating Systems

2006-03-24
HISTORICAL
AIR860A
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only. No attempt has been made to develop the complete electrical circuitry associated with the electrical heating components; however, the electrical circuitry required for heating component operation, safety, and monitoring will be included as available. Specific design information is given for various modern aircraft utilizing electrical heating. Each aircraft discussed will be identified by alphabetical letter designation and included in the appropriate appendix.
Standard

AIRCRAFT ELECTRICAL HEATING SYSTEMS

1992-03-01
HISTORICAL
AIR860
It is intended that the scope of this information report be limited to electrical heating of passenger, crew, and cargo compartments only.
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC, AIRPLANE CABIN

1956-03-15
HISTORICAL
ARP89B
This recommended practice covers automatic cabin temperature control systems of the following types for pressurized and unpressurized cabins: Type I - Proportioning. Type II - On-Off, or Cycling. Type III - Floating, including modifications thereof.
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC, AIRCRAFT COMPARTMENT

1992-03-01
HISTORICAL
ARP89C
The recommendations of this ARP are primarily intended to be applicable to temperature control of compartments, occupied or unoccupied, of civil aircraft whose prime function is the transporting of passengers or cargo. The recommendations will apply, however, to a much broader category of civil and military aircraft where automatic temperature control systems are applicable.
Standard

Aircraft Compartment Automatic Temperature Control Systems

2018-08-23
CURRENT
ARP89D
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
Standard

Aircraft Humidification

2021-01-14
CURRENT
AIR1609B
This SAE Aerospace Information Report (AIR) covers the design parameters for various methods of humidification applicable to aircraft, the physiological aspects of low humidities, the possible benefits of controlling cabin humidity, the penalties associated with humidification, and the problems which must be solved for practical aircraft humidification systems. The design information is applicable to commercial and military aircraft. The physiological aspects cover all aircraft environmental control applications.
Standard

The Control of Excess Humidity in Avionics Cooling

2020-05-12
CURRENT
ARP987B
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
Standard

EQUIPMENT COOLING IN PRESENT AND IMMEDIATE FUTURE CIVIL TRANSPORT AIRCRAFT

1956-12-01
HISTORICAL
AIR64
This AIR is intended as a status report on the work of E.C.S. to date in dealing with the problem of equipment cooling in present and immediate future civil transport aircraft. Subsequent revisions to this AIR will follow as more information is gathered on this subject.
Standard

Cooling of Military Avionic Equipment

2015-10-16
CURRENT
AIR1277B
This SAE Aerospace Information Report (AIR) contains information on the thermal design requirements of airborne avionic systems used in military airborne applications. Methods are explored which are commonly used to provide thermal control of avionic systems. Both air and liquid cooled systems are discussed.
Standard

COOLING OF MODERN AIRBORNE ELECTRONIC EQUIPMENT

1991-10-01
HISTORICAL
AIR1277
This document contains information on the cooling of modern airborne electronics, emphasizing the use of a heat exchange surface which separates coolant and component. It supplements the information contained in AIR 64 for the draw through method and in AIR 728 for high Mach Number aircraft. Report contents include basic methods, characteristics of coolants, application inside and outside of the "black box" use of thermostatic controls to improve reliability and system design. Characteristics of typical cooling components are treated sufficiently to permit selection and to estimate size and weight. While emphasis is placed herein on equipment cooling, section 9 dealing with thermal control of the environment, reminds the reader that some equipment will require heating for start up from a cold condition or as a means to control temperature within narrow limits (e.g. in a crystal oven). Property data and constants are also tabulated.
Standard

Cooling of Modern Airborne Electronic Equipment

2004-06-22
HISTORICAL
AIR1277A
This document contains information on the cooling of modern airborne electronics, emphasizing the use of a heat exchange surface which separates coolant and component. It supplements the information contained in AIR64 for the draw through method and in AIR728 for high Mach Number aircraft. Report contents include basic methods, characteristics of coolants, application inside and outside of the black box use of thermostatic controls to improve reliability and system design. Characteristics of typical cooling components are treated sufficiently to permit selection and to estimate size and weight. While emphasis is placed herein on equipment cooling, section 10 dealing with thermal control of the environment, reminds the reader that some equipment will require heating for start up from a cold condition or as a means to control temperature within narrow limits (e.g. in a crystal oven). Property data and constants are also tabulated. All numerical values are given in British and SI units.
Standard

Electrical and Electronic Equipment Cooling in Commercial Transports

2021-08-10
CURRENT
AIR64C
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. Instances where these two locations result in different requirements are identified. This document generally refers to the cooled equipment as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. The primary focus of this document is E/E equipment which uses forced air cooling to keep the equipment within acceptable environmental limits. These limits ensure the equipment operates reliably and within acceptable tolerances. Cooling may be supplied internally or externally to the E/E equipment case. Some E/E equipment is cooled solely by natural convection, conduction, and radiation to the surrounding environment.
Standard

Aircraft Compartment Automatic Temperature Control Systems

2018-09-24
WIP
ARP89E
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
X