Refine Your Search

Topic

Search Results

Standard

In-House Verification of EMI Test Equipment

2016-08-01
CURRENT
AIR6236A
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: Current probe Line Impedance Stabilization Network (LISN) Directional coupler Attenuator Cable loss Low noise preamplifier Rod antenna base Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
Standard

In-House Verification of EMI Test Equipment

2015-12-13
HISTORICAL
AIR6236
This AIR provides guidance to the EMI test facility on how to check performance of the following types of EMI test equipment: Current probe Line Impedance Stabilization Network (LISN) Directional coupler Attenuator Cable loss Low noise preamplifier Rod antenna base Passive antennas All performance checks can be performed without software. A computer may be required to generate an electronic or hard copy of data. This is not to say that custom software might not be helpful; just that the procedures documented herein specifically eschew the necessity of automated operation.
Standard

Cabling Guidelines for Electromagnetic Compatibility

1998-12-01
CURRENT
AIR1394A
These cable practice recommendations tend toward design guidance rather than standardization. EMC achievement tests can be standardized, but the means for achievement should not be constrained. The material can best be described as an essay on cabling, and the theme is that a cable is just a part of a complete circuit, the interconnect circuit. Cable EMC performance is thus determined largely by circuit design; it is unrealistic to expect cabling techniques to compensate for improper impedance, symmetry or waveform in the circuit.
Standard

Alternative (Ecological) Method for Measuring Electronic Product Immunity to External Electromagnetic Fields

2003-07-28
CURRENT
ARP5889
This method is used to define the immunity of electric and electronic apparatus and equipment (products) to radiated electromagnetic (EM) energy. This method is based on injecting the calibrated radio frequency currents (voltages) into external conductors and/or internal circuits of the product under test, measuring the strength of the EM field generated by this product and evaluating its immunity to the external EM field on the basis of the data obtained. The method can be utilized only when it is physically possible to connect the injector to the conductors and/or circuits mentioned before.
Standard

Control Plan/Technical Construction File

1998-09-01
HISTORICAL
ARP935A
This document contains a "sample" Control Plan with explanations as to the intended content of various sections. It also can serve as a sample technical construction file as specified by the European EMC Directive.
Standard

Control Plan/Technical Construction File

2013-03-25
CURRENT
ARP935B
This document contains a "sample" Control Plan with explanations as to the intended content of various sections. It also can serve as a sample technical construction file as specified by the European EMC Directive.
Standard

Flight Line Grounding and Bonding of Aircraft

1999-01-01
HISTORICAL
ARP4043A
This ARP provides the rationale and theory of charges being present on aircraft while on the ground. The necessary implementation of safety practices are explained and defined.
Standard

Electromagnetic Compatibility Control Requirements Systems

1999-08-01
HISTORICAL
ARP4242
This SAE Aerospace Recommended Practice (ARP) establishes overall system electromagnetic compatibility (EMC) control requirements. EMC includes the following: a Electromagnetic Environmental Effects (E3) b Electrostatic Discharge (ESD) c Electromagnetic Interference (EMI) d Electromagnetic Vulnerability (EMV) e Electromagnetic Pulse (EMP) f Hazards of Electromagnetic Radiation to Ordnance (HERO) g Hazards of Electromagnetic Radiation to Personnel (HERP) h Hazards of Electromagnetic Radiation to Fuels (HERF) i High Intensity Radiated Fields (HIRF) j Lightning Protection k Static Electricity l TEMPEST This document is intended to be used for the procurement of land, sea, air, or space systems by any procurement activity. Tailoring of specific requirements is necessary and Appendix A has been provided for guidance.
Standard

Recommended Insertion Loss Test Methods for EMI Power Line Filters

2012-08-10
CURRENT
ARP4244A
This document presents standard methods to evaluate the common mode and differential mode insertion loss of passive electromagnetic interference power line filters from 10 kHz through 10 GHz. Insertion loss test methods for both quality assurance and performance prediction purposes are described. The performance prediction tests are selected to more closely approximate operating impedances. They are not intended to be inclusive or to represent worst case conditions. However, the methodology of this document can be used to determine the performance in an arbitrary impedance circuit.
Standard

Electromagnetic Compatibility Control Requirements Systems

2013-03-25
CURRENT
ARP4242A
This SAE Aerospace Recommended Practice (ARP) establishes overall system electromagnetic compatibility (EMC) control requirements. EMC includes the following: a Electromagnetic Environmental Effects (E3) b Electrostatic Discharge (ESD) c Electromagnetic Interference (EMI) d Electromagnetic Vulnerability (EMV) e Electromagnetic Pulse (EMP) f Hazards of Electromagnetic Radiation to Ordnance (HERO) g Hazards of Electromagnetic Radiation to Personnel (HERP) h Hazards of Electromagnetic Radiation to Fuels (HERF) i High Intensity Radiated Fields (HIRF) j Lightning Protection k Static Electricity I TEMPEST This document is intended to be used for the procurement of land, sea, air, or space systems by any procurement activity. Tailoring of specific requirements is necessary and Appendix A has been provided for guidance.
Standard

Electromagnetic Compatibility (EMC) System Design Checklist

1971-10-01
CURRENT
AIR1221
This checklist is to be used by project personnel to assure that factors required for adequate system electromagnetic compatibility are considered and incorporated into a program. It provides a ready reference of EMC management and documentation requirements for a particular program from preproposal thru acquisition. When considered with individual equipments comprising the system and the electromagnetic operational environment in which the system will operate, the checklist will aid in the preparation of an EMC analysis. The analysis will facilitate the development of system-dependent EMC criteria and detailed system, subsystem, and equipment design requirements ensuring electromagnetic compatibility.
Standard

Stripline Test Method to Characterize the Shielding Effectiveness of Conductive EMI Gaskets up to 40 GHz

2016-02-19
CURRENT
ARP6248
The purpose of this procedure is to establish a technique for reliably and repeatedly measuring the RF shielding characteristics of EMI conductive gasket materials and EMI conductive gaskets. Depending on the materials used for the construction of the measuring setup, the EMI conductive gaskets can be characterized against various joint surfaces. This standard will directly provide shielding effectiveness values up to 40 GHz, and will also be applicable for small samples of conductive EMI gaskets.
X