Refine Your Search

Search Results

Viewing 1 to 10 of 10
Standard

Acceptance Test Procedures and Standards to Ensure Clean Fuel System Components

2020-10-01
CURRENT
ARP1953B
To describe general guidelines for achieving selected levels of cleanliness in gas turbine engine fuel system components and to describe laboratory methods for measuring and reporting the contamination level of the wetted portion of fuel system components. As in SAE J1227 (covering hydraulic components) this practice includes guidelines for levels of acceptance but does not attempt to set those levels.
Standard

Capacitive Fuel Gauging System Accuracies

2021-04-23
CURRENT
AIR1184B
This report is intended to identify the various errors typically encountered in capacitance fuel quantity measurement systems. In addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of fuel measurement accuracy using capacitance based sensing is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of capacitive fuel gauging operation can be found in AIR5691.
Standard

FUEL GAGING SYSTEM ACCURACIES

1973-01-01
HISTORICAL
AIR1184
It is intended to provide capacitance gaging system "specifiers" with the necessary tools to make value judgements concerning the various errors typically encountered in systems of this type. Thus, in addition to merely identifying the error-causes, descriptions are given concerning the basic factors from which these error-causes derive. This knowledge, when complemented with appraisals of the relative costs of minimizing the error-causes, will furnish the system specifier with a powerful tool with which to optimize gaging system accuracy, and thus, to obtain the "best possible" overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance gaging accuracy is quite extensive, and in some instances very complex, no attempt is made herein to present an all-inclusive and fully comprehensive evaluation of the subject. Rather, the major contributors to gaging system inaccuracy are discussed.
Standard

CAPACITIVE FUEL GAUGING SYSTEM ACCURACIES

2007-12-04
HISTORICAL
AIR1184A
This report is intended to identify the necessary analytical tools to enable making value judgments for minimizing the various errors typically encountered in capacitance systems. Thus, in addition to identification of error sources, it describes the basic factors which cause the errors. When coupled with appraisals of the relative costs of minimizing the errors, this knowledge will furnish a tool with which to optimize gauging system accuracy, and thus, to obtain the optimum overall system within the constraints imposed by both design and budgetary considerations. Since the subject of capacitance accuracy is quite complex, no attempt is made herein to present a fully-comprehensive evaluation of all factors affecting gauging system accuracy. Rather, the major contributors to gauging system inaccuracy are discussed and emphasis is given to simplicity and clarity, somewhat at the expense of completeness. An overview of Capacitive Fuel Gauging operation is provided in the Appendix.
Standard

Nozzles and Ports – Gravity Fueling Interface Standards for Civil Aircraft

2012-01-03
CURRENT
AS1852D
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Nozzles and Ports - Gravity Fueling Interface Standard for Civil Aircraft

2006-03-24
HISTORICAL
AS1852C
This SAE Aerospace Standard (AS) defines the maximum allowable free opening dimensions for airframe fueling ports on civil aircraft that require the exclusive use of gasoline as an engine fuel, and the minimum free opening dimensions for airframe fueling ports on civil aircraft that operate with turbine fuels as the primary fuel type and with gasoline as the emergency fuel type. This SAE Aerospace Standard (AS) also defines the features and dimensions for airframe refueling ports on civil aircraft that require the exclusive use of turbine fuel as an engine fuel. In addition, this document defines the minimum fuel nozzle spout dimensions for turbine fuel ground service equipment, and the maximum fuel nozzle spout diameter for gasoline ground service equipment.
Standard

Recommendations for Fuel and Oil System Schematics

2019-05-07
CURRENT
ARP1482B
This document recommends and sets forth a set of symbols representing the components making up aircraft fuel and oil systems. The intended result is uniformity in system schematics so that they may be easily understood throughout the aerospace industry.
X