Refine Your Search

Topic

Search Results

Standard

BALL-ON-CYLINDER (BOC) AIRCRAFT TURBINE FUEL LUBRICITY TESTER

2007-12-04
HISTORICAL
AIR1794
This metric Aerospace Information Report (AIR) details a ball-on-cylinder (BOC) test device and specifies a method of rating the relative lubricity of aviation turbine fuel samples. The BOC produces a wear scar on a stationary steel ball by forcing it with a fixed load against a fuel wetted steel test ring in a controlled atmosphere. The test ring is rotated at a fixed speed so its surface is wetted by a momentary exposure to the fluid under test. The size of the wear scar is a measure of the test fluid lubricity and provides a basis for predicting friction or wear problems. This ARP is intended as a guide toward a standard practice, but may be subject to frequent change reflecting experience and technical advances. Use of this AIR is not recommended where flexibility of revision is impractical. Anyone interested in current information on BOC developments and technology should contact the Coordinating Research Council (CRC) Aviation Group on Aviation Fuel Lubricity.
Standard

Ball-On-Cylinder (BOC) Aircraft Turbine Fuel Lubricity Tester

2016-05-13
HISTORICAL
AIR1794A
This metric SAE Aerospace Information Report (AIR) details a ball-on-cylinder (BOC) test device and specifies a method of rating the relative lubricity of aviation turbine fuel samples. The BOC produces a wear scar on a stationary steel ball by forcing it with a fixed load against a fuel wetted steel test ring in a controlled atmosphere. The test ring is rotated at a fixed speed so its surface is wetted by a momentary exposure to the fluid under test. The size of the wear scar is a measure of the test fluid lubricity and provides a basis for predicting friction or wear problems.
Standard

Ball-On-Cylinder (BOC) Aircraft Turbine Fuel Lubricity Tester

2016-07-26
CURRENT
AIR1794B
This metric SAE Aerospace Information Report (AIR) details a ball-on-cylinder (BOC) test device and specifies a method of rating the relative lubricity of aviation turbine fuel samples. The BOC produces a wear scar on a stationary steel ball by forcing it with a fixed load against a fuel wetted steel test ring in a controlled atmosphere. The test ring is rotated at a fixed speed so its surface is wetted by a momentary exposure to the fluid under test. The size of the wear scar is a measure of the test fluid lubricity and provides a basis for predicting friction or wear problems.
Standard

Impact of Copper Contamination on the Thermal Stability of Jet Fuels

2019-04-11
CURRENT
AIR6443
This SAE Aerospace Information Report (AIR) discusses the sources of Copper in aviation jet fuels, the impact of Copper on thermal stability of jet fuels and the resultant impact on turbine engine performance, and potential methods for measurement and reduction of the catalytic activity of Copper contamination in jet fuels. This document is an information report and does not provide recommendations or stipulate limits for Copper concentrations in jet fuels.
Standard

Performance Testing of Lubricant Filter Elements Utilized in Aircraft Power and Propulsion Lubrication Systems

2020-11-12
CURRENT
AIR1666C
This SAE Aerospace Information Report (AIR) reviews performance testing parameters for non-cleanable (often referred to as disposable) filter elements utilized in aircraft power and propulsion lubrication systems, including gas turbine engines and auxiliary power units (APUs), propulsion and transmission gear boxes, and constant speed drives and integrated drive generators (IDGs). This document is confined to laboratory testing of filter element performance to qualify the filtration medium and filter element construction as opposed to qualification of the complete filter assembly. The testing discussed here is usually followed by laboratory and on-engine testing of the entire lube filter assembly (including filter element, housing, valving, etc.), which is outside the scope of this AIR.
Standard

Performance Testing of Lubricant Filter Elements Utilized in Aircraft Power and Propulsion Lubrication Systems

2014-05-29
HISTORICAL
AIR1666B
This SAE Aerospace Information Report (AIR) reviews performance testing parameters for non-cleanable, often referred to as disposable, filter elements utilized in aircraft power and propulsion lubrication systems, including gas turbine engines and auxiliary power units (APUs), propulsion and transmission gear boxes, and constant speed drives and integrated drive generators (IDGs). This document is confined to laboratory testing of filter element performance to qualify the filtration medium and filter element construction as opposed to qualification of the complete filter assembly. The testing discussed here is usually followed by laboratory and on-engine testing of the entire lube filter assembly (including filter element, housing, valving, etc.), which is outside the scope of this AIR.
Standard

FUEL PUMP THERMAL SAFETY DESIGN

1978-11-01
HISTORICAL
ARP594C
These recommendations cover only those design factors which might cause the pump motor or pump housing to act as an autogenous or spark-ignition source for explosive fuel vapors within the airplane tank.
Standard

AIRCRAFT FUEL SYSTEM VAPOR-LIQUID RATIO PARAMETER

1974-01-01
HISTORICAL
AIR1326
The AIR is limited to a presentation of the historical background, the technical rationale which generated the V/L fuel condition interface requirement in specifications between the aircraft fuel delivery system and the aircraft engine fuel system, and limitations in the usage of the V/L concept.
Standard

Aircraft Fuel System Vapor-Liquid Ratio Parameter

2020-04-29
CURRENT
AIR1326A
The AIR is limited to a presentation of the historical background, the technical rationale which generated the V/L fuel condition interface requirement in specifications between the aircraft fuel delivery system and the aircraft engine fuel system, and limitations in the usage of the V/L concept.
Standard

CONTAMINANTS FOR AIRCRAFT TURBINE ENGINE FUEL SYSTEM COMPONENT TESTING

1994-11-01
HISTORICAL
AIR4246A
This document discusses descriptions of fluid contamination products. These contaminants are used for design evaluation and formal component qualification/certification testing. Such tests are routinely performed on candidate aircraft engine fuel and pneumatic system components. Typical of these components are fuel pumps, fuel filters, fuel controls, pressurizing valves, flow dividers, selector valves, and combustor nozzles. The purpose of this document is to recommend standard descriptions to be used by specification writers.
Standard

Contaminants for Aircraft Turbine Engine Fuel System Component Testing

2002-04-19
HISTORICAL
AIR4246B
This document discusses descriptions of fluid contamination products. These contaminants are used for design evaluation and formal component qualification/certification testing. Such tests are routinely performed on candidate aircraft engine fuel and pneumatic system components. Typical of these components are fuel pumps, fuel filters, fuel controls, pressurizing valves, flow dividers, selector valves, and combustor nozzles. The purpose of this document is to recommend standard descriptions to be used by specification writers.
X