Refine Your Search

Topic

Search Results

Standard

Aircraft Fuel System Pressure Definitions

2018-06-05
WIP
AIR1749A
The information in this document is limited to aircraft engine fuel feed, refueling, and transfer components. It is assumed that isothermal, liquid fluid conditions exist, herein referred to as fuel. Where a unit of measure is suffixed, this is intended to show a generally associated unit for illustration only and is not an exclusive endorsement of this particular term. Where applicable and allowable it is understood that a referee fluid may be substituted for fuel.
Standard

Aircraft Engine Fuel Feed and Transfer Component Pressure Definitions

1991-02-13
CURRENT
AIR1749
The information in this document is limited to aircraft engine fuel feed, refueling, and transfer components (reference 2.1). It is assumed that isothermal, liquid fluid conditions exist, herein referred to as fuel. Where a unit of measure is suffixed, this is intended to show a generally associated unit for illustration only and is not an exclusive endorsement of this particular term. Where applicable and allowable it is understood that a referee fluid may be substituted for fuel.
Standard

Aircraft/Engine Fuel Pump Net Positive Suction Pressure Performance Test and Evaluation

1994-05-01
CURRENT
ARP4024
This procedure applies to engine or airframe-mounted fuel pumps. The procedure recommends single-pass operation to minimize changes in fuel properties affecting NPSP capability. An optional method using a recirculation system is also included and may be specified at the discretion of the equipment specification. This procedure defines the recommended test setup, test procedure, data acquisition, and data presentation.
Standard

Aircraft/Engine Fuel Pump Two Phase (Slugging Flow) Inlet Performance Test and Evaluation

1994-09-01
CURRENT
ARP4028
This procedure is intended to apply to all engine or airframe mounted fuel pumps and controls when required by the applicable specification. The procedure recommends a recirculation system similar to ARP492 to control the fuel properties affecting the fluid and its ability to "release" fuel vapors and dissolved air and have these "re-entrained or dissolved" during the fluid recovery process back to the tank and the original starting conditions.
Standard

Multi-Pass Method for Evaluating Filtration Performance of Fine Lube Filter Elements Utilized in Aerospace Power and Propulsion Lubrication Systems

2014-10-08
CURRENT
ARP5454B
This SAE Aerospace Recommended Practice (ARP) describes the multi-pass method for evaluating the filtration performance of fine lube filter elements, commonly utilized in aerospace power and propulsion lubrication systems: gas turbine engines, auxiliary power units (APUs), helicopter transmissions, constant speed drives (CSDs), and integrated drive generators (IDGs).
Standard

Multi-Pass Method for Evaluating Filtration Performance of Fine Lube Filter Elements Utilized in Aerospace Power and Propulsion Lubrication Systems

2008-12-17
HISTORICAL
ARP5454A
This SAE Aerospace Recommended Practice (ARP) describes the multi-pass method for evaluating the filtration performance of fine lube filter elements, commonly utilized in aerospace power and propulsion lubrication systems: gas turbine engines, auxiliary power units (APUs), helicopter transmissions, constant speed drives (CSDs), and integrated drive generators (IDGs).
Standard

Multi-Phase Method for Evaluating Filtration Performance of Fine Lube Filter Elements Utilized in Aerospace Power and Propulsion Lubrication Systems

2003-11-19
HISTORICAL
ARP5454
This SAE Aerospace Recommended Practice (ARP) describes the multi-pass method for evaluating the filtration performance of fine lube filter elements, commonly utilized in aerospace power and propulsion lubrication systems: gas turbine engines, auxiliary power units (APUs), helicopter transmissions, constant speed drives (CSDs), and integrated drive generators (IDGs).
Standard

Aircraft Turbine Engine Fuel System Component Endurance Test Procedure (Room Temperature Contaminated Fuel)

1992-04-06
HISTORICAL
MAP749B
This recommended practice describes a method for conducting room temperature, contaminated fuel, endurance testing when the applicable specification requires nonrecirculation of the contaminants. The objective of the test is to determine the resistance of engine fuel system components to wear or damage caused by contaminated fuel operation. It is not intended as a test for verification of the component's filter life. ARP1827 is recommended for filter evaluation.
Standard

Aircraft Turbine Engine Fuel System Component Endurance Test Procedure (Room Temperature Contaminated Fuel)

1981-09-30
HISTORICAL
MAP749A
This recommended practice describes a method for conducting room temperature, contaminated fuel, endurance testing when the applicable specification requires nonrecirculation of the contaminants. The objective of the test is to determine the resistance of engine fuel system components to wear or damage caused by contaminated fuel operation. It is not intended as a test for verification of the component's filter life. ARP1827 is recommended for filter evaluation.
Standard

Aircraft Fuel System Vapor-Liquid Ratio Parameter

1997-12-01
CURRENT
AIR1326A
The AIR is limited to a presentation of the historical background, the technical rationale which generated the V/L fuel condition interface requirement in specifications between the aircraft fuel delivery system and the aircraft engine fuel system, and limitations in the usage of the V/L concept.
Standard

AIRCRAFT FUEL SYSTEM VAPOR-LIQUID RATIO PARAMETER

1974-01-01
HISTORICAL
AIR1326
The AIR is limited to a presentation of the historical background, the technical rationale which generated the V/L fuel condition interface requirement in specifications between the aircraft fuel delivery system and the aircraft engine fuel system, and limitations in the usage of the V/L concept.
Standard

Fuel Pump Thermal Safety Design

2017-11-09
CURRENT
ARP594F
The requirements presented in this document address the key considerations for thermal safety in aircraft fuel pump design. Document sections focus on understanding safety relative to an electrically motor driven fuel pump assembly acting as an ignition source for explosive fuel vapors within the airplane tank.
Standard

Fuel Pump Thermal Safety Design

2016-05-24
HISTORICAL
ARP594E
The requirements presented in this document cover the design factors which might cause any part of an electrically motor driven fuel pump assembly to act as an ignition source for explosive fuel vapors within the airplane tank.
X