Refine Your Search

Topic

Search Results

Standard

Considerations for Ground Fault Interrupter (GFI) / Arc Fault Circuit Breaker (AFCB) for fuel pumps power circuit protection installation, specification and testing

2016-02-08
WIP
AIR6384
This SAE Aerospace Information Report (AIR) is intended to provide guidance for installing GFI/AFCB in the fuel pumps power circuits for protection of fuel vapors ignition inside the tank in case of a failure that causing arcing inside the pump. Besides, this AIR is also intended to provide minimum specification and testing for ground fault interrupter (GFI) and arc fault circuit breaker (AFCB), addressing the issues associated with the verification requirements based on current regulatory guidance per AC25.981-1C.
Standard

Lubrication System Oil Tank Sizing

2018-02-26
WIP
ARP7976
This Aerospace Recommended Practice provides the considerations appropriate for Engine Lubrication System Oil Tank sizing, and provides means to confirm the oil volume held within the Oil Tank is adequate for satisfactory Lubrication System performance. Two scenarios should be considered when demonstrating that the Oil Tank capacity and oil volume held within the Oil Tank are adequate, sea level engine testing and in-flight operation, when demonstrating the capability of Lubrication System to operate in support of FAA Part 23 and Part 25, CFR Part 33, and corresponding EASA CS-E regulations, and equivalent Military application requirements.
Standard

Performance Evaluation of Fuel Filter Elements Utilized in Aircraft Gas Turbine Engine/APU Main Fuel Systems

2019-09-11
WIP
AIR6985
This SAE Aerospace Information Report (AIR) reviews performance testing of fuel filter elements utilized in aircraft gas turbine engine/APU fuel systems and discusses a sequence of standard tests used to qualify fuel filter element performance. This allows both manufacturer and customer a common means to specify, control, and evaluate filter elements. The methodology discussed should be incorporated in fuel filter element specifications.
Standard

Aircraft Fuel System Pressure Definitions

2018-06-05
WIP
AIR1749A
The information in this document is limited to aircraft engine fuel feed, refueling, and transfer components. It is assumed that isothermal, liquid fluid conditions exist, herein referred to as fuel. Where a unit of measure is suffixed, this is intended to show a generally associated unit for illustration only and is not an exclusive endorsement of this particular term. Where applicable and allowable it is understood that a referee fluid may be substituted for fuel.
Standard

Aircraft Engine Fuel Feed and Transfer Component Pressure Definitions

1991-02-13
CURRENT
AIR1749
The information in this document is limited to aircraft engine fuel feed, refueling, and transfer components (reference 2.1). It is assumed that isothermal, liquid fluid conditions exist, herein referred to as fuel. Where a unit of measure is suffixed, this is intended to show a generally associated unit for illustration only and is not an exclusive endorsement of this particular term. Where applicable and allowable it is understood that a referee fluid may be substituted for fuel.
Standard

Aircraft/Engine Fuel Pump Net Positive Suction Pressure Performance Test and Evaluation

1994-05-01
CURRENT
ARP4024
This procedure applies to engine or airframe-mounted fuel pumps. The procedure recommends single-pass operation to minimize changes in fuel properties affecting NPSP capability. An optional method using a recirculation system is also included and may be specified at the discretion of the equipment specification. This procedure defines the recommended test setup, test procedure, data acquisition, and data presentation.
Standard

Aircraft/Engine Fuel Pump Two Phase (Slugging Flow) Inlet Performance Test and Evaluation

1994-09-01
CURRENT
ARP4028
This procedure is intended to apply to all engine or airframe mounted fuel pumps and controls when required by the applicable specification. The procedure recommends a recirculation system similar to ARP492 to control the fuel properties affecting the fluid and its ability to "release" fuel vapors and dissolved air and have these "re-entrained or dissolved" during the fluid recovery process back to the tank and the original starting conditions.
Standard

Fire Testing of Fluid Handling Components for Aircraft Engines and Aircraft Engine Installations

2007-02-15
CURRENT
AS4273A
This document establishes requirements, test procedures, and acceptance criteria for the fire testing of fluid handling components and materials used in aircraft fluid systems. It is applicable to fluid handling components other than those prescribed by AS1055 (e.g., hoses, tube assemblies, coils, and fittings). It also is applicable to materials, wiring, and components such as reservoirs, valves, gearboxes, pumps, filter assemblies, accumulators, fluid-cooled electrical/electronic components, in-flight fluid system instrumentation, hydromechanical controls, actuators, heat exchangers, and manifolds. These components may be used in fuel, lubrication, hydraulic, or pneumatic systems.
Standard

Aircraft Turbine Engine Fuel System Component Endurance Test Procedure (Room Temperature Contaminated Fuel)

2015-08-24
CURRENT
MAP749C
This SAE Aerospace Recommended Practice describes a method for conducting room temperature, contaminated fuel, endurance testing when the applicable specification requires nonrecirculation of the contaminants. The objective of the test is to determine the resistance of engine fuel system components to wear or damage caused by contaminated fuel operation. It is not intended as a test for verification of the component's filter performance and service life. ARP1827 is recommended for filter performance evaluation.
Standard

Aircraft Turbine Engine Fuel System Component Endurance Test Procedure (Room Temperature Contaminated Fuel)

1992-04-06
HISTORICAL
MAP749B
This recommended practice describes a method for conducting room temperature, contaminated fuel, endurance testing when the applicable specification requires nonrecirculation of the contaminants. The objective of the test is to determine the resistance of engine fuel system components to wear or damage caused by contaminated fuel operation. It is not intended as a test for verification of the component's filter life. ARP1827 is recommended for filter evaluation.
Standard

Aircraft Turbine Engine Fuel System Component Endurance Test Procedure (Room Temperature Contaminated Fuel)

1981-09-30
HISTORICAL
MAP749A
This recommended practice describes a method for conducting room temperature, contaminated fuel, endurance testing when the applicable specification requires nonrecirculation of the contaminants. The objective of the test is to determine the resistance of engine fuel system components to wear or damage caused by contaminated fuel operation. It is not intended as a test for verification of the component's filter life. ARP1827 is recommended for filter evaluation.
Standard

Aircraft Fuel System Vapor-Liquid Ratio Parameter

1997-12-01
CURRENT
AIR1326A
The AIR is limited to a presentation of the historical background, the technical rationale which generated the V/L fuel condition interface requirement in specifications between the aircraft fuel delivery system and the aircraft engine fuel system, and limitations in the usage of the V/L concept.
Standard

AIRCRAFT FUEL SYSTEM VAPOR-LIQUID RATIO PARAMETER

1974-01-01
HISTORICAL
AIR1326
The AIR is limited to a presentation of the historical background, the technical rationale which generated the V/L fuel condition interface requirement in specifications between the aircraft fuel delivery system and the aircraft engine fuel system, and limitations in the usage of the V/L concept.
X