Refine Your Search

Topic

Author

Search Results

Journal Article

Real Time Implementation of DOC-DPF Models on a Production-Intent ECU for Controls and Diagnostics of a PM Emission Control System

2009-10-06
2009-01-2904
This paper describes the joint development by Tenneco and Pi Shurlok of a complete diesel engine aftertreatment system for controlling particulate matter emissions. The system consists of a DOC, DPF, sensors, controller and an exhaust fuel injection system to allow active DPF regeneration. The mechanical components were designed for flow uniformity, low backpressure and component durability. The overall package is intended as a complete PM control system solution for OEMs, which does not require any significant additions to the OEM's engine control strategies and minimizes integration complexity. Thus, to make it easier to adapt to different engine platforms, ranging from small off-road vehicle engines to large locomotive engines, model-based control algorithms were developed in preference to map-based controls.
Journal Article

Secondary Fuel Injection Layout Influences on DOC-DPF Active Regeneration Performance

2013-09-24
2013-01-2465
Catalysts and filters continue to be applied widely to meet particulate matter regulations across new and retrofit diesel engines. Soot management of the filter continues to be enhanced, including regeneration methodologies. Concerns regarding in-cylinder post-injection of fuel for active regeneration increases interests in directly injecting this fuel into the exhaust. Performance of secondary fuel injection layouts is discussed, and sensitivities on thermal uniformity are measured and analyzed, providing insight to packaging challenges and methods to characterize and improve application designs. Influences of end cone geometries, mixers, and injector mounting positions are quantified via thermal distribution at each substrate's outlet. A flow laboratory is applied for steady state characterization, repeated on an engine dynamometer, which also provides transient results across the NRTC.
Journal Article

Investigation of SCR Catalysts for Marine Diesel Applications

2017-03-28
2017-01-0947
Evolving marine diesel emission regulations drive significant reductions of nitrogen oxide (NOx) emissions. There is, therefore, considerable interest to develop and validate Selective Catalytic Reduction (SCR) converters for marine diesel NOx emission control. Substrates in marine applications need to be robust to survive the high sulfur content of marine fuels and must offer cost and pressure drop benefits. In principle, extruded honeycomb substrates of higher cell density offer benefits on system volume and provide increased catalyst area (in direct trade-off with increased pressure drop). However higher cell densities may become more easily plugged by deposition of soot and/or sulfate particulates, on the inlet face of the monolithic converter, as well as on the channel walls and catalyst coating, eventually leading to unacceptable flow restriction or suppression of catalytic function.
Journal Article

Development of Common Rail and Manifold Fluid Delivery Systems for Large Diesel Engine Aftertreatement

2012-09-24
2012-01-1961
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine aftertreatment system (EAS) development aimed at reducing exhaust emissions such as NOx and PM. An EAS has three primary subsystems, Aftertreatment hardware, controls and fluid delivery. Fluid delivery is the subsystem which supplies urea into exhaust stream to allow SCR catalytic reaction and/or periodic DOC diesel dosing to elevate exhaust temperatures for diesel particulate filter (DPF) soot regeneration. The purpose of this paper is to discuss various aspects of fluid delivery system development from flow and pressure perspective. It starts by giving an overview of the system requirements and outlining theoretical background; then discusses overall design considerations, injector and pump selection criteria, and three main injector layouts. Steady state system performance was studied for manifold layout.
Technical Paper

Urea SCR System Characterization through Unique Flow Bench Testing

2006-10-31
2006-01-3471
As Selective Catalytic Reduction (SCR) NOx abatement systems gain commercial acceptance and popularity, the need for efficiency predictive capabilities increases. To this end, a flow bench was developed capable of varying steady state inputs (temperature, flow rate and NOx concentration). The efficiencies of various SCR systems was measured and compared. This concept of a steady state flow bench approach allows for an efficient and cost effective means to evaluate comparable system designs.
Technical Paper

Considerations on the Temperature Distribution and Gradient in the Filter During Regeneration in Burner Type Diesel Particulate Trap System (II)

1998-02-23
980188
In this paper, the general effects of the regeneration parameters, such as initial particulate loading, space velocity, oxygen concentration and inlet gas temperature, on the combustion of the particulate matter (PM) filtrated in the ceramic filter of a diesel particulate filter (DPF) system are considered experimentally. A new method to control the combustion rate of the PM during regeneration is also studied for the protection of the ceramic cordierite filter. It controls the temperature of gas entrained into the filter during re-generation, which was previously not considered as a controllable factor in the vehicle[1, 2, 3, 4 and 5]. Control of gas temperature was achieved by controlling the flow rate of engine exhaust gas entrained into the filter during regeneration.
Technical Paper

Support Mat Test Equipment Artifact Identification and Elimination

2009-04-20
2009-01-0978
Monolithic emission control devices typically use a support mat material to provide mechanical support, mechanical isolation, and thermal insulation for ceramic monoliths. This material is similar to a felt, but made from ceramic fibers. Non-intumescent support mat materials contain only ceramic fibers and binder compounds, while intumescent support mats also contain vermiculite; a material that expands with the application of heat. The durability of the support mat is critical to the durability of the overall emission control components. In addition to many component validation methods that evaluate the durability of the entire system methods to evaluate the response and predict the durability of the support mat itself help provide important design information. This paper summarizes challenges and artifacts in support mat testing.
Technical Paper

Mixer Development for Urea SCR Applications

2009-10-06
2009-01-2879
2010 and future EPA regulations introduce stringent Oxides of Nitrogen (NOx) reduction targets for diesel engines. Selective Catalytic Reduction (SCR) of NOx by Urea over catalyst has become one of the main solutions to achieve these aggressive reductions. As such, urea solution is injected into the exhaust gas, evaporated and decomposed to ammonia via mixing with the hot exhaust gas before passing through an SCR catalyst. Urea mixers, in this regard, are crucial to ensure successful evaporation and mixing since its liquid state poses significant barriers, especially at low temperature conditions that incur undesired deposits. Intensive efforts have been taken toward developing such urea mixers, and multiple criteria have been derived for them, mainly including NOx reduction efficiency and uniformity. In addition, mixers must also satisfy other requirements such as low pressure drop penalty, mechanical strength, material integrity, low cost, and manufacturability.
Technical Paper

Evaluation of a DPF Regeneration System and DOC Performance Using Secondary Fuel Injection

2009-10-06
2009-01-2884
An active diesel particulate filter (DPF) regeneration system is evaluated, which applies secondary fuel injection (SFI) directly within the exhaust system upstream of a diesel oxidation catalyst (DOC). Diesel fuel is oxidized in the presence of a proprietary catalyst system, increasing exhaust gas temperatures in an efficient and controlled manner, even during low engine-out gas temperatures. The exotherms produced by secondary fuel injection (SFI) have been evaluated using two different DOC volumes and platinum catalyst loadings. DOC light-off temperatures were measured using SFI under steady-state conditions on an engine dynamometer. A ΔT method was used for the light-off temperature measurements – i.e., the minimum DOC inlet gas temperature at which the exothermic reaction increases the outlet gas temperature 20°C or greater than the inlet temperature.
Technical Paper

Optimization of a Urea SCR System for On-Highway Truck Applications

2010-10-05
2010-01-1938
In order to satisfy tightening global emissions regulations, diesel truck manufacturers are striving to meet increasingly stringent Oxides of Nitrogen (NOx) reduction standards. The majority of heavy duty diesel trucks have integrated urea SCR NOx abatement strategies. To this end, aftertreatment systems need to be properly engineered to achieve high conversion efficiencies. A EuroV intent urea SCR system is evaluated and failed to meet NOx conversion targets with severe urea deposit formation. Systematic enhancements of the design have been performed to enable it to meet targets, including emission reduction efficiency via improved reagent mixing, evaporation, distribution, back pressure, and removing of urea deposits. Multiple urea mixers, injector mounting positions and various system layouts are developed and evaluated, including both CFD analysis and full scale laboratory tests.
Technical Paper

Investigation of Urea Deposits in Urea SCR Systems for Medium and Heavy Duty Trucks

2010-10-05
2010-01-1941
With increasing applications of urea SCR for NOx emission reduction, improving the system performance and durability has become a high priority. A typical urea SCR system includes a urea injector, injector housing, mixer, and appropriate pipe configurations to allow continuous urea injection into the exhaust stream and evaporation of urea solution into gaseous products. Continuous operation at various conditions with high NOx reduction is possible, but one problem that threatens the life and performance of these systems is urea deposit. When urea or its byproducts become deposited on the inner surfaces of the system including walls, mixers, injector housings and substrates it can create concerns of backpressure and material deteriorations. In addition, deposits as a waste of reagents can negatively affect engine operation, emissions performance and DEF economy. Urea deposit behavior is explored in terms of heat transfer, pipe geometry, injector layout and mixing mechanisms.
Technical Paper

Evaluation of Mixer Designs for Large Diesel Exhaust Aftertreatment Systems

2010-10-05
2010-01-1943
The presented work evaluates several mixer designs being considered for use in large Diesel exhaust aftertreatment systems. The mixers are placed upstream of a diesel oxidation catalyst (DOC) in the exhaust system, where a liquid hydrocarbon fuel is injected. DOC exothermic behaviour resulting from each mixer at different operating conditions is evaluated. A gas flow bench equipped with a XY-Table measurement system is used to determine gas velocity, temperature, and hydrocarbon species uniformity, as well as, pressure drop. Experimental mixer data obtained from a flow bench and an engine dynamometer are compared and discussed. The experimental methodology used in this study can be used to evaluate mixers via comprehensive testing.
Technical Paper

The Effect of Liquid Fuel on the Cylinder Liner on Engine-Out Hydrocarbon Emissions in SI Engines

2001-09-24
2001-01-3489
The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz cylinder liner in an SI engine test rig. In addition, comparing visualization results with the trend of hydrocarbon emissions in this engine, the effect of cylinder wall-wetting during a simulated cold start and warmed-up condition was investigated with the engine experiment. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized.
Technical Paper

Computational and Optical Investigation of Liquid Fuel Film on the Cylinder Wall of an SI Engine

2003-03-03
2003-01-1113
The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this work, the fuel film formation model was developed to investigate the distribution of wall fuel film on the cylinder wall of an SI engine. By integrating the continuity, momentum, and energy equations along the direction of fuel film thickness the simulation of the fuel film formation was carried out in the test rig. Spray impingement and fuel film models were incorporated into the computational fluid dynamics code, STAR-CD to calculate fuel film thickness and distribution of fuel film on the cylinder wall. With a laser-induced fluorescence method, the two-dimensional visualization of liquid fuel films was carried out to validate the simulation results.
Technical Paper

DPF Regeneration Response: Coupling Various DPFs with a Thermal Regeneration Unit to Assess System Behaviors

2011-09-13
2011-01-2200
Diesel Particulate Filters (DPFs) have been successfully applied for several years to reduce Particulate Matter (PM) emissions from on-highway applications, and similar products are now also applied in off-highway markets and retrofit solutions. Most solutions are catalytically-based, necessitating minimum operating temperatures and demanding engine support strategies to reduce risks [1, 2, 3, 4, 5, 6, 7, 8]. An ignition-based thermal combustion device is applied with Cordierite and SiC filters, evaluating various DPF conditions, including effects of soot load, exhaust flow rates, catalytic coatings, and regeneration temperatures. System designs are described, including flow and temperature uniformity, as well as soot load distribution and thermal gradient response.
Technical Paper

CFD Optimization of Exhaust Manifold for Large Diesel Engine Aftertreatment Systems

2011-09-13
2011-01-2199
To meet EPA Tier IV large diesel engine emission targets, intensive development efforts are necessary to achieve NOx reduction and Particulate Matter (PM) reduction targets [1]. With respect to NOx reduction, liquid urea is typically used as the reagent to react with NOx via SCR catalyst [2]. Regarding to PM reduction, additional heat is required to raise exhaust temperature to reach DPF active / passive regeneration performance window [3]. Typically the heat can be generated by external diesel burners which allow diesel liquid droplets to react directly with oxygen in the exhaust gas [4]. Alternatively the heat can be generated by catalytic burners which enable diesel vapor to react with oxygen via DOC catalyst mostly through surface reactions [5].
Technical Paper

A Dual - Reductant HC LNC Approach to Commercial Vehicle Tier 4 Final Solutions

2011-09-13
2011-01-2203
Stringent global emissions legislations demand effective NOx reduction strategies for both the engine as well as the aftertreatment. Diesel applications have previously applied Lean NOx Catalysts (LNCs) [1, 2], but their reduction efficiency and longevity have been far less than that of the competing ammonia-based SCR systems, such as urea [3]. A catalyst has been developed to significantly reduce NOx emissions, approaching 60% with ULSD and exceeding 95% with E85. Both thermal and sulfur aging are applied, as well as on-engine aging, illustrating resilient performance to accommodate necessary life requirements. A robust system is developed to introduce both ULSD from the vehicle's tank as well as E85 (up to 85% ethanol with the balance being gasoline) from a moderately sized supplemental tank, enabling extended mileage service intervals to replenish the reductant, as compared with urea, particularly when coupled with an engine-out based NOx reduction technology, such as EGR.
Technical Paper

SOLID SCR®: Demonstrating an Improved Approach to NOx Reduction via a Solid Reductant

2011-09-13
2011-01-2207
Stringent global emissions legislation demands effective NOx reduction strategies, particularly for the aftertreatment, and current typical liquid urea SCR systems achieve efficiencies greater than 90% [1]. However, with such high-performing systems comes the trade-off of requiring a tank of reductant (urea water solution) to be filled regularly, usually as soon as the fuel fillings or as far as oil changes. Advantages of solid reductants, particularly ammonium carbamate, include greater ammonia densities, enabling the reductant refill interval to be extended several multiples versus a given reductant volume of urea, or diesel exhaust fluid (DEF) [2]. An additional advantage is direct gaseous ammonia dosing, enabling reductant injection at lower exhaust temperatures to widen its operational coverage achieving greater emissions reduction potential [3], as well as eliminating deposits, reducing mixing lengths, and avoiding freeze/thaw risks and investments.
Technical Paper

Development of Urea SCR Systems for Large Diesel Engines

2011-09-13
2011-01-2204
EPA 2015 Tier IV emission requirements pose significant challenges to large diesel engine after treatment system development with respect to reducing exhaust emissions including HC, CO, NOx and Particulate Matter (PM). For a typical locomotive, marine or stationary generator engine with 8 to 20 cylinders and 2500 to 4500 BHP, the PM reduction target could be over 90% and NOx reduction target over 75% for a wide range of running conditions. Generally, HC, CO and PM reductions can be achieved by combining DOC, cDPF and active regeneration systems. NOx reduction can be achieved by injecting urea as an active reagent into the exhaust stream to allow NOx to react with ammonia per SCR catalysts, as the mainstream approach for on-highway truck applications.
Technical Paper

Clean EGR for Gasoline Engines – Innovative Approach to Efficiency Improvement and Emissions Reduction Simultaneously

2017-03-28
2017-01-0683
External Exhaust Gas Recirculation (EGR) has been used on diesel engines for decades and has also been used on gasoline engines in the past. It is recently reintroduced on gasoline engines to improve fuel economy at mid and high engine load conditions, where EGR can reduce throttling losses and fuel enrichment. Fuel enrichment causes fuel penalty and high soot particulates, as well as hydrocarbon (HC) emissions, all of which are limited by emissions regulations. Under stoichiometric conditions, gasoline engines can be operated at high EGR rates (> 20%), but more than diesel engines, its intake gas including external EGR needs extreme cooling (down to ~50°C) to gain the maximum fuel economy improvement. However, external EGR and its problems at low temperatures (fouling, corrosion & condensation) are well known.
X