Refine Your Search

Search Results

Standard

PASSENGER SEAT DESIGN COMMERCIAL TRANSPORT AIRCRAFT

1987-11-19
HISTORICAL
ARP750B
In addition to those aspects of a passenger seat as comfort and appearance, the passenger seat, whether aft, forward or side facing, is the basic link that supports and ties the occupant to the aircraft structure. It is essential that the support and tie down functions be accomplished in a manner that will provide maximum safety during all normal conditions of flight, emergency flight maneuvers and crash landings, whether on land or water, and that these functions are not compromised to attain the comfort and appearance features.
Standard

Photometric Data Acquisition Procedures for Impact Test

2003-05-21
HISTORICAL
ARP5482
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein.
Standard

Photometric Data Acquisition Procedures for Impact Test

2011-11-28
CURRENT
ARP5482A
This SAE Aerospace Recommended Practice (ARP) defines the test set-up requirements, general analysis procedures, and test report documentation for impact tests where photometric analysis of the high speed film or digital video will be required to obtain target paths (typically the Anthropomorphic Test Dummy (ATD) head path and knee path). Such tests support the requirements of AS8049 - Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft and General Aviation Aircraft. These setup and analysis procedures are applicable to conventional, geometry based, two-dimensional analysis. If a more sophisticated technique that allows cameras to be installed at oblique angles for two or three-dimensional analysis is used, then the specific procedures required by that technique supersede any conflicting procedures contained herein.
Standard

Safety Lap Belts (For Civil Transport Aircraft)

2000-08-01
CURRENT
ARP682C
This Aerospace Recommended Practice (ARP) provides recommendations intended for standardization of safety lap belts without hindering the development of new, improved design. The purpose is not to specify the design methods or specific mechanism to accomplish the objectives.
Standard

Safety Lap Belts (For Civil Transport Aircraft)

1967-08-01
HISTORICAL
ARP682A
This Aerospace Recommended Practice (ARP) provides recommendations intended for standardization of safety lap belts without hindering the development of new, improved design. The purpose is not to specify the design methods or specific mechanism to accomplish the objectives.
Standard

Safety Lap Belts (For Civil Transport Aircraft) (Noncurrent May 91)

1991-05-01
HISTORICAL
ARP682B
This Aerospace Recommended Practice (ARP) provides recommendations intended for standardization of safety lap belts without hindering the development of new, improved design. The purpose is not to specify the design methods or specific mechanism to accomplish the objectives.
Standard

Magnesium Alloys in Aircraft Seats - Developments in Magnesium Alloy Flammability Testing

2014-05-16
CURRENT
AIR6160
This document provides informational background, rationale and a technical case to allow consideration of the removal of the magnesium alloy restriction in aircraft seat construction as contained in AS8049B. The foundation of this argument is flammability characterization work performed by the FAA at the William J. Hughes Technical Center (FAATC), Fire Safety Branch in Atlantic City, New Jersey, USA. The rationale and detailed testing results are presented along with flammability reports that have concluded that the use of specific types of magnesium alloys in aircraft seat construction does not increase the hazard level potential in the passenger cabin in a post-crash fire scenario. Further, the FAA has developed a lab scale test method, reference DOT/FAA/TC-13/52, to be used as a certification test, or method of compliance (MOC) to allow acceptability of the use of magnesium in the governing TSO-C127 and TSO-C39C.
Standard

Component Standard for Airbag Systems Installed in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2004-01-20
WIP
AS5785
This Aerospace Standard specifies the minimum component performance requirements and test procedures for airbag systems in civil rotorcraft, transport aircraft and general aviation aircraft. It is intended to establish a minimum level of performance that can be called upon by the system designer. Only core component technical requirements are addressed in this document. Installation specific issues, those that cannot be evaluated using a generic seat or interior are not included in this document. Installation performance specific requirements, which are dependent on specific seat or interior dimensions, are addressed in the SAE AS6466 document, titled "Installation Performance Standard for Airbag Systems Installed in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft ". Compliance with this standard alone does not assure adequate performance of the airbag system under normal and emergency conditions.
Standard

Gaining Approval for Seats with Integrated Electronics in Accordance with AC21-49 Section 7.b

2017-10-16
WIP
ARP6448A
This document provides an industry-recommended framework for establishing agreements to ensure that seats with integrated electronic components (e.g., actuation system, reading light, inflatable restraint, IFE, etc.) meet the seat TSO Minimum Performance Standard. These agreements will allow Seat Suppliers to build and ship completed, integrated and approved seat assemblies under TSOA with electronics included. The document presents the roles, responsibilities and accontibilities of the Electronics Manufacturer, the Seat Supplier, and the Seat Installer/Electronics Activator in the context of AC 21-49 Section 7.b ‘ Type Certification using TSO-approved seat with electronic components defined in TSO design’. This document applies to all FAA seat TSOs (C39(), C127()…etc).
Standard

Performance Standards for Side-Facing Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2016-12-13
CURRENT
AS8049/1B
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Standard

Performance Standards for Side-Facing Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2016-03-05
HISTORICAL
AS8049/1A
This SAE Aerospace Standard (AS) defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in Title 14, Code of Federal Regulations (CFR) Part 23, 25, 27, or 29. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Standard

Performance Standards for Single-Occupant, Side-Facing Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2010-09-13
HISTORICAL
AS8049/1
This Society of Automotive Engineers (SAE) Aerospace Standard (AS) Annex defines Minimum Performance Standards (MPS), qualification requirements, and minimum documentation requirements for side-facing seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to define test and evaluation criteria to demonstrate occupant protection when a single-occupant side-facing seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic test conditions set forth in the applicable 14, Code of Federal Regulations (CFR) Part 23, 25, 27 or 29. While this Annex addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant. The seat supplier’s responsibility consists of meeting all the seat system performance requirements and obtaining and supplying to the installation applicant all the data prescribed by this document.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2005-01-25
HISTORICAL
AS8049B
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2016-12-28
WIP
AS8049D

This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29.

Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data.

While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.

Standard

Performance Standard for Seats in Civil Rotorcraft and Transport Aircraft, and General Aviation Aircraft

1997-09-01
HISTORICAL
AS8049A
This Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraf, transport aircraft and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Aviation Regulations 14 CFR Part 23, Part 25, Part 27, or Part 29. This document also provides guidance for design by enumerating certain design goals to enhance comfort, serviceability, and safety. Guidance for test procedures, measurements, equipment, and interpretation of results is presented to promote uniform techniques and to achieve acceptable data.
Standard

Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft

2015-08-14
CURRENT
AS8049C
This SAE Aerospace Standard (AS) defines minimum performance standards, qualification requirements, and minimum documentation requirements for passenger and crew seats in civil rotorcraft, transport aircraft, and general aviation aircraft. The goal is to achieve comfort, durability, and occupant protection under normal operational loads and to define test and evaluation criteria to demonstrate occupant protection when a seat/occupant/restraint system is subjected to statically applied ultimate loads and to dynamic impact test conditions set forth in the applicable Federal Regulations 14 CFR 23, 25, 27, or 29. Guidance for test procedures, measurements, equipment, and interpretation of results is also presented to promote uniform techniques and to achieve acceptable data. While this document addresses system performance, responsibility for the seating system is divided between the seat supplier and the installation applicant.
X