Refine Your Search

Topic

Search Results

Standard

AIRCRAFT SOFTWARE COMMON CONFIGURATION REPORTING

2019-08-13
CURRENT
ARINC843-1
This standard defines a common configuration report format that can be retrieved from an aircraft for use by ground tools and maintenance personnel. Reports will be generated in Extensible Markup Language (XML) format and structured as defined by this document. Several optional elements and attributes are defined to allow flexibility for a given report. This standard provides aircraft manufacturers, regulatory agencies, and airlines a format standard for aircraft configuration reporting, and facilitates automated comparison of configuration data reports (e.g., authorized versus as flying, etc.).
Standard

AIRCRAFT DATA INTERFACE FUNCTION (ADIF)

2020-07-21
CURRENT
ARINC834-8
This document defines an Aircraft Data Interface Function (ADIF) developed for aircraft installations that incorporate network components based on commercially available technologies. This document defines a set of protocols and services for the exchange of aircraft avionics data across aircraft networks. A common set of services that may be used to access specific avionics parameters are described. The ADIF may be implemented as a generic network service, or it may be implemented as a dedicated service within an ARINC 759 Aircraft Interface Devices (AID) such as those used with an Electronic Flight Bag (EFB). Supplement 8 includes improvements in the Aviation Data Broadcast Protocol (ADBP), adds support for the Media Independent Aircraft Messaging (MIAM) protocol, and contains data security enhancements. It also includes notification and deprecation of the Generic Aircraft Parameter Service (GAPS) protocol that will be deleted in a future supplement.
Standard

AIRCRAFT DATA NETWORK, PART 1, SYSTEMS CONCEPTS AND OVERVIEW

2019-06-20
CURRENT
ARINC664P1-2
The purpose of this document is to provide an overview of data networking standards recommended for use in commercial aircraft installations. These standards provide a means to adapt commercially defined networking standards to an aircraft environment. It refers to devices such as bridges, switches, routers and hubs and their use in an aircraft environment. This equipment, when installed in a network topology, can optimize data transfer and overall avionics performance.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

INTERSYSTEM NETWORK INTEGRATION

2021-06-24
CURRENT
ARINC688
The purpose of this document is to provide guidelines for integrating previously standalone cabin systems such as cabin management systems, In-Flight Entertainment (IFE) systems, In-Flight Connectivity (IFC) systems, galley systems, surveillance systems, etc. Resource sharing between systems can reduce airline costs and/or increase functionality. But, as systems expose their internal resources to external systems, the risk of an intrusion that could degrade function and/or negatively expose the supplier’s or airline’s brand increases. This document provides a recommended IP networking design framework between aircraft systems to reduce the operational security threats while still supporting the necessary intersystem routing.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

MARK I AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2019-09-19
CURRENT
ARINC791P1-3
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

CABIN ARCHITECTURE FOR WIRELESS DISTRIBUTION SYSTEM

2019-08-13
CURRENT
ARINC820
This document defines a secure Wi-Fi distribution network installed in the aircraft passenger cabin for passenger and crew use. Carry-on Portable Electronic Devices (PEDs) such as smart phones, tablets, and laptops may use this network to access public internet services provided on the aircraft.
Standard

CABIN PASSENGER SEAT PRODUCTION TESTING

2019-12-18
CURRENT
ARINC648
This report defines the requirements and recommended practices for production testing of aircraft passenger seats and seat groups. Production testing is performed at the seat manufacturers' facilities prior to the shipment of the seats to the airframe manufacturers, Maintenance, Repair, and Overhaul (MRO), or airlines/operators for installation in the aircraft. Using this guidance, rework is minimized and schedules remain minimally affected.
Standard

COCKPIT DISPLAY SYSTEM INTERFACES TO USER SYSTEMS PART 1 AVIONICS INTERFACES, BASIC SYMBOLOGY, AND BEHAVIOR

2019-06-17
CURRENT
ARINC661P1-7
ARINC 661 defines logical interfaces to Cockpit Display Systems (CDS) used in all types of aircraft installations. The CDS provides graphical and interactive services to user applications within the flight deck environment. When combined with data from user applications, it displays graphical images to the flight deck crew. The document emphasizes the need for independence between aircraft systems and the CDS. This document defines the interface between the avionics equipment and display system graphics generators. This document does not specify the "look and feel" of any graphical information, and as such does not address human factors issues. These are defined by the airline flight operations community. Supplement 7 adds the definition of: Selector Widget, Tree Widget, New FormatString options, Readouts available in MapItems, Provisions for Touch Screen Displays.
Standard

AERONAUTICAL MOBILE AIRPORT COMMUNICATION SYSTEM (AEROMACS) TRANSCEIVER AND AIRCRAFT INSTALLATION STANDARDS

2017-07-07
CURRENT
ARINC766
This documents defines the Installation Characteristics of an airborne radio transceiver capable of broadband wireless communication with an Airport Surface Network. The Aeronautical Mobile Airport Communications System (AeroMACS) Radio Unit (ARU) will operate in the aeronautical protected frequency of 5091 MHz to 5150 MHz, utilizing the IEEE 802.16e WiMAX protocol. It is intended to offload some of the congested narrowband VHF airport traffic used for ATS and AOC communications. ARU and Antenna Form, Fit, Function and Interfaces are described.
Standard

MARK 1 AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2014-08-29
CURRENT
ARINC791P1-2
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

CABIN CONNECTORS AND CABLES PART 1 DESCRIPTION AND OVERVIEW

2012-11-19
CURRENT
ARINC800P1
This document is the first of a multi-part specification that will provide a catalog of cabin connector and cables that may be used in ARINC Standard cabin systems, including In-Flight Entertainment. Part 1 describes connector and cable requirements and evaluation criteria for the interface components used in the integration of cabin systems. Future releases will define connectors, contacts, and termination methods in Part 2. Cables will be specified in Part 3.
Standard

MARK 3 AVIATION SATELLITE COMMUNICATION SYSTEMS

2017-08-09
CURRENT
ARINC781-7
This document sets forth the desired characteristics of an aviation satellite communication (Satcom) system intended for installation in all types of commercial transport and business aircraft. The intent of this document is to provide general and specific guidance on the form factor and pin assignments for the installation of the avionics primarily for airline use. It also describes the desired operational capability of the equipment to provide data and voice communications, as well as additional standards necessary to ensure interchangeability. This Characteristic specifies equipment using Inmarsat satellites operating in L-band. Ku-band and Ka-band equipment is specified in ARINC Characteristic 791.
Standard

ANALOG AND DISCRETE DATA CONVERTER SYSTEM

1981-09-10
CURRENT
ARINC729-1
This standard sets forth the characteristics of an ADDCS designed for installation in commercial transport aircraft. The ADDCS is intended to process, convert and multiplex analog and discrete signals in order to provide them in digital format described in ARINC 429.
Standard

MULTI-PURPOSE CONTROL AND DISPLAY UNIT

1990-06-20
CURRENT
ARINC739-1
MCDU consists of an alphanumeric keyboard and display unit capable of interfacing with a number of aircraft systems. Dedicated keys on the MCDU provide the means for system selection with programmable soft keys. ARINC 429 interfaces are used to communicate with participating systems.
Standard

AIR DATA AND INERTIAL REFERENCE SYSTEM (ADIRS)

2001-07-31
CURRENT
ARINC738A-1
This standard sets forth characteristics for a 4 MCU integrated digital ADIRS intended for installation in subsonic commercial transport aircraft. It is envisioned that the ADIRS will incorporate the capabilities of both an air data system and an inertial reference system.
X