Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Steady-State Local Heat Flux Measurements in a Straight Pipe Extension of an Exhaust Port of a Spark Ignition Engine

Experiments were carried out on a straight pipe extension of an exhaust port of a multi-cylinder, spark-ignition engine to investigate the axial variation of the steady-state surface heat transfer. Local, steady-state, surface heat flux measurements were made at five different stations on the test section. Based on an optimization procedure developed in this study, the heat-flux measurements obtained for axial distances x / D > 2, were found to be correlated very well (R2 = 0.95) by an equation in the form of an entrance length correction, which is a function solely of x / D, multiplied by the Sieder-Tate convective heat transfer correlation; a correlation valid for fully-developed, steady-state, turbulent, pipe flows. Most importantly, this paper provides strong evidence that the observed heat transfer augmentation in the engine exhaust system is due solely to entrance effects and not due to flow fluctuations, which was the accepted cause.
Technical Paper

Intake-Valve Temperature and the Factors Affecting It

Steady-state temperature measurements were made at two locations on the back surface of the intake valves of one of the cylinders of a Saturn 1.9-L DOHC engine. The temperature locations were such that in the upstream location the thermocouple is subjected to the impingement of the fuel spray during the injection process, whereas in the downstream location the thermocouple is out of the main fuel spray. The measured intake valve temperature at the upstream location was significantly lower than that at the downstream location, which was attributed to the spray cooling effect. The intake valve temperature was found to increase with increasing load, speed and coolant temperature. As the air-fuel ratio changes the valve temperature exhibits a maximum at near stoichiometric compositions, which is attributed to convective heat transfer from the backflow of combustion gases during the valve-overlap period.
Technical Paper

Intake-Valve Temperature Histories During S.I. Engine Warm-Up

The present study is an experimental investigation on the influence of engine operational parameters on the temperature history of intake valves. During the initial stage of the warm-up process, the temperature history of the intake valve followed an exponential behavior with a time constant that ranged from about 23 to 39 s for the test conditions examined. In contrast, the temperature history of the coolant varied linearly with time suggesting that the net heat input to the coolant is roughly constant during the initial stage of the engine warm-up process. After the initial transient phase that lasted about one minute, the temperature rise of the intake valve was quasi-steady. During this latter period, the measured intake valve temperature was predicted by the steady-state temperature correlation developed in an earlier study.
Technical Paper

Effects of Operational Parameters on Structural Temperatures and Coolant Heat Rejection of a S. I. Engine

This study reports the effects of various engine operational parameters and coolant conditions on the structural temperature distribution, and on the heat rejection to the coolant and to the lubricating oil of a 16-valve 4-cylinder engine. Included are comparisons of the cooling characteristics of the aqueous solution coolant with those of 100% ethylene glycol coolant. Lastly, an empirical equation for the coolant heat rejection of this engine is presented.
Technical Paper

Impact of Engine Design on Vehicle Heating System Performance

A global thermal model of a vehicle powertrain is used to quantify how different engine design and powertrain calibration strategies influence the performance of a vehicle heating system. Each strategy is evaluated on its ability to improve the warm-up and heat rejection characteristics of a small-displacement, spark-ignition engine while minimizing any adverse effect on fuel consumption or emissions. An energy audit analysis shows that the two strategies having the greatest impact on heating system performance are advancing the spark and forcing the transmission to operate in a lower gear. Changes in head mass, exhaust port diameter, and coolant flow rate influence the coolant warm-up rate but have relatively little effect on steady state heat transfer at the heater core.