Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Effects of Sulfur Level and Anisotropy of Sulfide Inclusions on Tensile, Impact, and Fatigue Properties of SAE 4140 Steel

2008-04-14
2008-01-0434
During metal forming processes such as rolling and forging, deformable manganese sulfide (MnS) inclusions become elongated. Such elongated MnS inclusions can have considerable adverse effects on mechanical properties, if the inclusions are not aligned with the loading direction. The objectives of this study were to evaluate and compare fatigue, monotonic tensile and CVN impact behavior of SAE 4140 steel with high (0.077% S), low (0.012% S) and ultra low (0.004% S) sulfur contents at two hardness levels (40 HRC and 50 HRC). The longitudinally oriented samples at 40 HRC, where MnS inclusions were oriented along the loading direction, did not exhibit any significant sensitivity of tensile or fatigue properties to the sulfur content. For the transversely oriented MnS inclusions, however, the monotonic tensile test results indicate very low ductility of the high sulfur material at both hardness levels, where specimens failed shortly after yielding.
Journal Article

Axial and Bending Fatigue of a Medium Carbon Steel Including Geometry and Residual Stress Effects

2009-04-20
2009-01-0422
This paper discusses the effects of changes in specimen geometry, stress gradient, and residual stresses on fully-reversed constant amplitude uniaxial fatigue behavior of a medium carbon steel. Axial fatigue tests were performed on both flat and round specimens, while four-point rotating bending tests were performed only on round specimens. All the tests were performed using shot peened and unpeened flat and round samples, to investigate the effects of compressive residual stresses on fatigue behavior. The specimens in the rotating bending tests experienced longer life for a given stress amplitude than in the axial test. Shot-peening was found to be beneficial in the long life region, while in short life tests the shot-peened samples experienced a shorter life than the unpeened samples under both axial and bending test conditions.
Journal Article

Surface Finish Effects on Fatigue Behavior of Forgings

2011-04-12
2011-01-0488
Fatigue fractures are the most common type of mechanical failures of components and structures. It is widely recognized that surface finish has a significant effect on fatigue behavior. Forgings can be accompanied by significant surface roughness and decarburization. The correction factors used in many mechanical design textbooks to correct for the as-forged surface condition are typically based on data published in the 1940's. It has been found by several investigators that the existing data for as-forged surface condition is too conservative. Such conservative values often result in over-engineered designs of many forged parts, leading not only to increased cost, but also inefficiencies associated with increased weight, such as increased fuel consumption in the automotive industry. In addition, this can reduce forging competitiveness as a manufacturing process in terms of cost and performance prediction in the early design stage, compared to alternative manufacturing processes.
Journal Article

Fatigue Life Predictions under General Multiaxial Loading Based on Simple Material Properties

2011-04-12
2011-01-0487
A procedure for fatigue life estimation of components and structures under variable amplitude multiaxial loadings based on simple and commonly available material properties is presented. Different aspects of the analysis consisting of load cycle counting method, plasticity model, fatigue damage parameter, and cumulative damage rule are presented. The only needed material properties for the proposed procedure are hardness and monotonic and axial cyclic deformation properties (HB, K, n, K′ and n′). Rainflow cycle counting method is used for identifying number of cycles. Non-proportional cyclic hardening is estimated from monotonic and axial cyclic deformation behaviors. A critical plane approach is used to quantify fatigue damage under variable amplitude multiaxial loading, where only material hardness is used to estimate the fatigue curve, and where the needed deformation response is estimated based on Tanaka's non-proportionality parameter.
Journal Article

Fatigue Behavior of Cast Iron Including Mean Stress Effects

2015-04-14
2015-01-0544
With improvements in casting technology, cast iron can be an alternative to steel in some applications due to its similar strength. One objective of this study was to analyze cast iron data obtained from the literature and evaluate predictive correlations between its tensile, microstructural, and fatigue properties. Reasonably good correlation of tensile strength and yield strength were found with hardness. However, fatigue strength could not be correlated with hardness or tensile properties. Another objective of this study was to evaluate tensile and compressive means stress effects on fatigue behavior of 120-90-02 ductile cast iron experimentally, as well as analytically by using predictive models. Mean stress levels were chosen such that R ratios in load-controlled tests were −7, −3, −1, 0, 1/3, 0.5, and 0.75. Modified Goodman, Smith-Watson-Topper, FKM and the Fatemi-Socie mean stress parameters were used to account for the mean stress effect on fatigue life.
Technical Paper

A Comparative Study of Fatigue Behavior and Life Predictions of Forged Steel and PM Connecting Rods

2004-03-08
2004-01-1529
This study investigates and compares fatigue behavior of forged steel and powder metal connecting rods. The experiments included strain-controlled specimen testing, with specimens obtained from the connecting rods, as well as load-controlled connecting rod bench testing. Monotonic and cyclic deformation behaviors, as well as strain-controlled fatigue properties of the two materials are evaluated and compared. Experimental S-N curves of the two connecting rods from the bench tests obtained under R = -1.25 constant amplitude loading conditions are also evaluated and compared. Fatigue properties obtained from specimen testing are then used in life predictions of the connecting rods, using the S-N approach. The predicted lives are compared with bench test results and include the effects of stress concentration, surface finish, and mean stress. The stress concentration factors were obtained from FEA, and the modified Goodman equation was used to account for the mean stress effect.
Technical Paper

Fatigue Life Comparisons of Competing Manufacturing Processes: A Study of Steering Knuckle

2004-03-08
2004-01-0628
A vehicle steering knuckle undergoes time-varying loadings during its service life. Fatigue behavior is, therefore, a key consideration in its design and performance evaluation. This research program aimed to assess fatigue life and compare fatigue performance of steering knuckles made from three materials of different manufacturing processes. These include forged steel, cast aluminum, and cast iron knuckles. In light of the high volume of forged steel vehicle components, the forging process was considered as base for investigation. Monotonic and strain-controlled fatigue tests of specimens machined from the three knuckles were conducted. Static as well as baseline cyclic deformation and fatigue properties were obtained and compared. In addition, a number of load-controlled fatigue component tests were conducted for the forged steel and cast aluminum knuckles. Finite element models of the steering knuckles were also analyzed to obtain stress distributions in each component.
Technical Paper

An Overview of Microalloyed Steels, Part I: Metallurgical Aspects

1996-02-01
960308
Microalloyed (MA) steels have been developed as one of the most significant metallurgical advances over the last thirty years, with their property improvement and cost effectiveness characteristics. Even though the underlying principles for microstructural property control of these steels have been well established, applications of these steels are still limited in scale mainly due to a lack of their understanding. This review paper focuses on mechanical property control of these steels. Since the properties depend mainly on the composition and microstructure which in turn are controlled by steel making and processing, metallurgical variables are reviewed in this first part of the review. These include their strengthening mechanisms, effects of composition and processing on their behavior, and the various MA steel microstructures.
Technical Paper

Fatigue Performance of Forged Steel and Ductile Cast Iron Crankshafts

2007-04-16
2007-01-1001
Fatigue is the primary cause of failure of crankshafts in internal combustion engines. The cyclic loading conditions and the stress concentrations in the crank pin fillets are unavoidable, and can result in fatigue failure. The objectives of this study were to compare the fatigue behavior of forged steel and ductile iron crankshafts from a one-cylinder engine as well as to determine if the fatigue life of a crankshaft can be accurately estimated using fatigue life predictions. Monotonic tensile tests as well as strain-controlled fatigue tests were conducted using specimens machined from the crankshafts to obtain the monotonic and cyclic deformation behavior and fatigue properties of the two materials. The forged steel had higher tensile strength and better fatigue performance than the ductile cast iron. Charpy v-notch impact tests were also conducted using specimens machined from the crankshafts to obtain and compare the impact toughness of the materials.
X