Refine Your Search

Search Results

Viewing 1 to 18 of 18
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Technical Paper

Effects of Ethanol-Blended Fuel on Combustion Characteristics, Gaseous and Particulate Emissions in Gasoline Direct Injection (GDI) Engines

2021-09-22
2021-26-0356
Ethanol fuel blends with gasoline for spark ignition (SI) internal combustion engines are widely used on account of their advantages in terms of fuel economy and emissions reduction potential. The focus of this paper is to study the effects of these blends on combustion characteristics such as in-cylinder pressure profiles, gas-phase emissions (e.g., unburned hydrocarbons, NOx) and particulates (e.g., particulate matter and particle number) using both measurement campaigns and digital engineering workflows. Nineteen load-speed operating points in a 1L 3-cylinder GDI SI engine were measured and modelled. The measurements for in-cylinder pressure and emissions were repeated at each operating point for three types of fuel: gasoline (E0, 0% by volume of ethanol blend), E10 (10 % by volume of ethanol blend) and E20 (20% by volume of ethanol blend).
Technical Paper

Two-stage Fuel Direct Injection in a Diesel Fuelled HCCI Engine

2007-07-23
2007-01-1880
Two-stage fuel direct injection (DI) has the potential to expand the operating region and control the auto-ignition timing in a Diesel fuelled homogeneous charge compression ignition (HCCI) engine. In this work, to investigate the dual-injection HCCI combustion, a stochastic reactor model, based on a probability density function (PDF) approach, is utilized. A new wall-impingement sub-model is incorporated into the stochastic spray model for direct injection. The model is then validated against measurements for combustion parameters and emissions carried out on a four stroke HCCI engine. The initial results of our numerical simulation reveal that the two-stage injection is capable of triggering the charge ignition on account of locally rich fuel parcels under certain operating conditions, and consequently extending the HCCI operating range.
Technical Paper

Formaldehyde and Hydroxyl Radicals in an HCCI Engine - Calculations and LIF-Measurements

2007-01-23
2007-01-0049
Concentrations of hydroxyl radicals and formaldehyde were calculated using homogeneous (HRM) and stochastic reactor models (SRM), and the result was compared to LIF-measurements from an optically accessed iso-octane / n-heptane fuelled homogeneous charge compression ignition (HCCI) engine. The comparison was at first conducted from averaged total concentrations / signal strengths over the entire combustion volume, which showed a good qualitative agreement between experiments and calculations. Time- and the calculation inlet temperature resolved concentrations of formaldehyde and hydroxyl radicals obtained through HRM are presented. Probability density plots (PDPs) through SRM calculations and LIF-measurements are presented and compared, showing a very good agreement considering their delicate and sensitive nature.
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Simulating Combustion of Practical Fuels and Blends for Modern Engine Applications Using Detailed Chemical Kinetics

2010-04-12
2010-01-0572
This research describes the potential to adopt detailed chemical kinetics for practical and potential future fuels using tri-component surrogate mixtures capable of simulating fuel octane “sensitivity” . Since the combustion characteristics of modern fuels are routinely measured using the RON and MON of the fuel, a methodology to generate detailed chemical kinetic mechanisms for these fuels based on these data is presented. Firstly, a novel correlation between various tri-component blends (comprised of i-octane, n-heptane and toluene) and fuel RON and MON was obtained by carrying out standard octane tests. Secondly, a chemical kinetic mechanism for tri-component fuels was validated using a Stochastic Reactor Model (SRM) suite, an in-cylinder engine combustion simulator, and a series of engine experiments conducted in HCCI operating mode.
Technical Paper

Moving Toward Establishing More Robust and Systematic Model Development for IC Engines Using Process Informatics

2010-04-12
2010-01-0152
Analyzing the combustion characteristics, engine performance, and emissions pathways of the internal combustion (IC) engine requires management of complex and an increasing quantity of data. With this in mind, effective management to deliver increased knowledge from these data over shorter timescales is a priority for development engineers. This paper describes how this can be achieved by combining conventional engine research methods with the latest developments in process informatics and statistical analysis. Process informatics enables engineers to combine data, instrumental and application models to carry out automated model development including optimization and validation against large data repositories of experimental data.
Technical Paper

Modelling a Dual-Fuelled Multi-Cylinder HCCI Engine Using a PDF Based Engine Cycle Simulator

2004-03-08
2004-01-0561
Operating the HCCI engine with dual fuels with a large difference in auto-ignition characteristics (octane number) is one way to control the HCCI operation. The effect of octane number on combustion, emissions and engine performance in a 6 cylinder SCANIA truck engine, fuelled with n-heptane and isooctane, and running in HCCI mode, are investigated numerically and compared with measurements taken from Olsson et al. [SAE 2000-01-2867]. To correctly simulate the HCCI engine operation, we implement a probability density function (PDF) based stochastic reactor model (including detailed chemical kinetics and accounting for inhomogeneities in composition and temperature) coupled with GT-POWER, a 1-D fluid dynamics based engine cycle simulator. Such a coupling proves to be ideal for the understanding of the combustion phenomenon as well as the gas dynamics processes intrinsic to the engine cycle.
Technical Paper

Application of the SRM Engine Suite over the Entire Load-Speed Operation of a U.S. EPA Tier 4 Capable IC Engine

2016-04-05
2016-01-0571
Internal combustion (IC) engines that meet Tier 4 Final emissions standards comprise of multiple engine operation and control parameters that are essential to achieve the low levels of NOx and soot emissions. Given the numerous degrees of freedom and the tight cost/time constraints related to the test bench, application of virtual engineering to IC engine development and emissions reduction programmes is increasingly gaining interest. In particular, system level simulations that account for multiple cycle simulations, incylinder turbulence, and chemical kinetics enable the analysis of combustion characteristics and emissions, i.e. beyond the conventional scope of focusing on engine performance only. Such a physico-chemical model can then be used to develop Electronic Control Unit in order to optimise the powertrain control strategy and/or the engine design parameters.
Technical Paper

Implementing Detailed Chemistry and In-Cylinder Stratification into 0/1-D IC Engine Cycle Simulation Tools

2011-04-12
2011-01-0849
Employing detailed chemistry into modern engine simulation technologies has potential to enhance the robustness and predictive power of such tools. Specifically this means significant advancements in the ability to compute the onset of ignition, low and high temperature heat release, local extinction, knocking, exhaust gas emissions formation etc. resulting in a set of tools which can be employed to carry out virtual engineering studies and add additional insight into common IC engine development activities such as computing IMEP, identifying safe/feasible operating ranges, minimizing exhaust gas emissions and optimizing operating strategy. However the adoption of detailed chemistry comes at a greater computational cost, this paper investigates the means to retain computational robustness and ease of use whist reducing computational timescales.
Technical Paper

Simulating PM Emissions and Combustion Stability in Gasoline/Diesel Fuelled Engines

2011-04-12
2011-01-1184
Regulations on emissions from diesel and gasoline fuelled engines are becoming more stringent in all parts of the world. Hence there is a great deal of interest in developing advanced combustion systems that offer the efficiency of a diesel engine, but with low PM and NOx. One promising approach is that of Partially-Premixed Compression Ignition (PPCI) or Low Temperature Combustion (LTC). Using this approach, PM can be reduced in compression ignition engines by promoting the mixing of fuel and air prior to combustion. This paper describes the application of an advanced combustion simulator for fuels, combustion and emissions to analyze the key processes which occur in PPCI combustion mode. A detailed chemical kinetic model with advanced PM population balance sub-model is employed in a PPCI engine context to examine the impact of ignition resistance on combustion, mixing, ignition and emissions.
Technical Paper

Identifying Optimal Operating Points in Terms of Engineering Constraints and Regulated Emissions in Modern Diesel Engines

2011-04-12
2011-01-1388
In recent decades, “physics-based” gas-dynamics simulation tools have been employed to reduce development timescales of IC engines by enabling engineers to carry out parametric examinations and optimisation of alternative engine geometry and operating strategy configurations using desktop PCs. However to date, these models have proved inadequate for optimisation of in-cylinder combustion and emissions characteristics thus extending development timescales through additional experimental development efforts. This research paper describes how a Stochastic Reactor Model (SRM) with reduced chemistry can be employed to successfully determine in-cylinder pressure, heat release and emissions trends from a diesel fuelled engine operated in compression ignition direct injection mode using computations which are completed in 147 seconds per cycle.
Technical Paper

Optimisation of Injection Strategy, Combustion Characteristics and Emissions for IC Engines Using Advanced Simulation Technologies

2011-01-19
2011-26-0080
Regulations concerning emissions from diesel- and gasoline-fuelled engines are becoming ever more stringent in all parts of the world. Historically these targets have been achieved through on-going technological development using an iterative process of computational modeling, design, build and test. Computational modeling is certainly the cheapest aspect within this process and if employed to meet more of the challenges associated with development, has the potential to significantly reduce developmental cost and time scales. Furthermore, computational models are an effective means to retain and apply often highly focused technical knowledge of complex processes within development teams thus delivering greater insight into processes.
Technical Paper

Combustion and Emissions Performance Analysis of Conventional and Future Fuels using Advanced CAE

2013-10-14
2013-01-2673
In recent years, there has been rapid progress in characterizing the detailed chemical kinetics associated with the oxidation of liquid hydrocarbons and their blends. However adding these fuel models to the industrial engineer's toolkit has proven a major challenge due to issues associated with high CPU cost and the poor suitability of many of the most promising and well known fuel models to IC engine applications. This paper demonstrates the state-of-the-art in the analysis and modelling of current and future transportation fuels or fuel blends for internal combustion engine applications. First-of-all, a benchmarking of eleven representative fuel models (39 to 1034 species in size) is carried out at engine/engine-like operating conditions by adopting the standard Research Octane and Cetane Number test data for comparison. Next, methods to construct a fuel model for a commercial fuel are outlined using a simple, yet robust surrogate mapping technique.
Technical Paper

Simulating a Homogeneous Charge Compression Ignition Engine Fuelled with a DEE/EtOH Blend

2006-04-03
2006-01-1362
We numerically simulate a Homogeneous Charge Compression Ignition (HCCI) engine fuelled with a blend of ethanol and diethyl ether by means of a stochastic reactor model (SRM). A 1D CFD code is employed to calculate gas flow through the engine, whilst the SRM accounts for combustion and convective heat transfer. The results of our simulations are compared to experimental measurements obtained using a Caterpillar CAT3401 single-cylinder Diesel engine modified for HCCI operation. We consider emissions of CO, CO2 and unburnt hydrocarbons as functions of the crank angle at 50% heat release. In addition, we establish the dependence of ignition timing, combustion duration, and emissions on the mixture ratio of the two fuel components. Good qualitative agreement is found between our computations and the available experimental data.
Technical Paper

Virtual Performance and Emissions Mapping for Diesel Engine Design Optimization

2013-04-08
2013-01-0308
This paper builds upon recent publication (SAE Technical Paper 2011-01-1388, 2011, doi:10.4271/2011-01-1388) and outlines the on-going development of an advanced simulator for virtual engine mapping and optimization of engine performance, combustion and emissions characteristics. The model is further advanced through development of new sub-models for turbulent mixing, multiple injection events, variable injection pressures, engine breathing and gas exchange, as well as particulates formation and oxidation. The result is a simulator which offers engine design and performance data typically associated with 1D thermodynamic engine cycle simulations but with the "physics-based" model robustness usually associated with 3D CFD methods. This combination then enables efficient optimization of engine design with respect to engine performance, combustion characteristics and exhaust gas emissions.
Technical Paper

Evaluating the EGR-AFR Operating Range of a HCCI Engine

2005-04-11
2005-01-0161
We present a computational tool to develop an exhaust gas recirculation (EGR) - air-fuel ratio (AFR) operating range for homogeneous charge compression ignition (HCCI) engines. A single cylinder Ricardo E-6 engine running in HCCI mode, with external EGR is simulated using an improved probability density function (PDF) based engine cycle model. For a base case, the in-cylinder temperature and unburned hydrocarbon emissions predicted by the model show a satisfactory agreement with measurements [Oakley et al., SAE Paper 2001-01-3606]. Furthermore, the model is applied to develop the operating range for various combustion parameters, emissions and engine parameters with respect to the air-fuel ratio and the amount of EGR used. The model predictions agree reasonably well with the experimental results for various parameters over the entire EGR-AFR operating range thus proving the robustness of the PDF based model.
Technical Paper

Evaluating Emissions in a Modern Compression Ignition Engine Using Multi-Dimensional PDF-Based Stochastic Simulations and Statistical Surrogate Generation

2018-09-10
2018-01-1739
Digital engineering workflows, involving physico-chemical simulation and advanced statistical algorithms, offer a robust and cost-effective methodology for model-based internal combustion engine development. In this paper, a modern Tier 4 capable Cat® C4.4 engine is modelled using a digital workflow that combines the probability density function (PDF)-based Stochastic Reactor Model (SRM) Engine Suite with the statistical Model Development Suite (MoDS). In particular, an advanced multi-zonal approach is developed and applied to simulate fuels, in-cylinder combustion and gas phase as well as particulate emissions characteristics, validated against measurements and benchmarked with respect to the predictive power and computational costs of the baseline model. The multi-zonal SRM characterises the combustion chamber on the basis of different multi-dimensional PDFs dependent upon the bulk or the thermal boundary layer in contact with the cylinder liner.
X