Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Series Hydraulic Hybrid System for a Passenger Car: Design, Integration and Packaging Study

This paper is on the development process of a hydraulic hybrid passenger vehicle. A subcompact passenger vehicle is chosen for modification into a series hydraulic hybrid with the aim of achieving a fuel economy of 100 MPG (2.35 L/100km) on the Urban Dynamometer Driving Schedule (UDDS). This work develops a methodology for simultaneously designing a powertrain and power management strategy of a series hydraulic hybrid. The design process was initiated by developing a system level model validated using engine and hydraulic pump/motor testing by the US EPA at the National Vehicle and Fuel Efficiency Laboratory (NVFEL). Parametric studies were performed in order to determine the size of the pump/motors and accumulators. Several candidate engines were tested and the system models were used to determine which one could provide the best fuel economy while meeting performance constraints.
Journal Article

Assessing the Regeneration Potential for a Refuse Truck Over a Real-World Duty Cycle

The majority of a refuse truck collection cycle consists of frequent Stop and Go events while moving from one household to another. The nature of this driving mission creates the opportunity to reduce fuel consumption by capturing and re-using the kinetic energy normally wasted during braking. This paper includes the evaluation of the brake energy available for regeneration from the conventional drivetrain; the description of the impact of the vehicle variable mass and auxiliary loads; a model validation over a real-world duty cycle; and the potential for an increase in fuel efficiency through hybridization of the drivetrain. The Hydraulic Hybrid (HH) technology is selected since it has a large power density.
Journal Article

Optimization of the Series-HEV Control with Consideration of the Impact of Battery Cooling Auxiliary Losses

This paper investigates the impact of battery cooling ancillary losses on fuel economy, and optimal control strategy for a series hybrid electric truck with consideration of cooling losses. Battery thermal model and its refrigeration-based cooling system are integrated into vehicle model, and the parasitic power consumption from cooling auxiliaries is considered in power management problem. Two supervisory control strategies are compared. First, a rule-based control strategy is coupled with a thermal management strategy; it controls power system and cooling system separately. The second is optimal control strategy developed using Dynamic Programming; it optimizes power flow with consideration of both propulsion and cooling requirement. The result shows that battery cooling consumption could cause fuel economy loss as high as 5%.
Journal Article

Quantification of Drive Cycle's Rapid Speed Fluctuations Using Fourier Analysis

This paper presents a new way to evaluate vehicle speed profile aggressiveness, quantify it from the perspective of the rapid speed fluctuations, and assess its impact on vehicle fuel economy. The speed fluctuation can be divided into two portions: the large-scale low frequency speed trace which follows the ongoing traffic and road characteristics, and the small-scale rapid speed fluctuations normally related to the driver's experience, style and ability to anticipate future events. The latter represent to some extent the driver aggressiveness and it is well known to affect the vehicle energy consumption and component duty cycles. Therefore, the rapid speed fluctuations are the focus of this paper. Driving data collected with the GPS devices are widely adopted for study of real-world fuel economy, or the impact on electrified vehicle range and component duty cycles.
Journal Article

Impacts of Real-World Driving and Driver Aggressiveness on Fuel Consumption of 48V Mild Hybrid Vehicle

The 48V mild hybrid technology is emerging as a very attractive option for high-volume vehicle electrification. Compared to high-voltage hybrids, the 48V system has a potential of achieving competitive fuel economy with significantly lower incremental costs. While previous studies of 48V mild hybrid systems discussed vehicle configuration, power management strategy and electric machine design, quantitative assessment of fuel economy under real-world conditions remains an open topic. Objectives of this paper are to propose a methodology for categorizing real-world cycles based on driver aggressiveness, and to subsequently analyze the impact of driving patterns on fuel saving potentials with a 48V mild hybrid system. Instead of using the certification test cycles to evaluate the fuel economy, real-world cycles are extracted from 2001-2003 Southern California Household Travel Survey.
Journal Article

Powerpack Optimal Design Methodology with Embedded Configuration Benchmarking

Design of military vehicle needs to meet often conflicting requirements such as high mobility, excellent fuel efficiency and survivability, with acceptable cost. In order to reduce the development cost, time and associated risk, as many of the design questions as possible need to be addressed with advanced simulation tools. This paper describes a methodology to design a fuel efficient powerpack unit for a series hybrid electric military vehicle, with emphasis on the e-machine design. The proposed methodology builds on previously published Finite element based analysis to capture basic design features of the generator with three variables, and couples it with a model reduction technique to rapidly re-design the generator with desired fidelity. The generator is mated to an off the shelf engine to form a powerpack, which is subsequently evaluated over a representative military drive cycles.
Journal Article

Powerpack Design in S-HEV: Quantifying the Influence of Duty Cycles on Design and Fuel Economy

Military vehicles experience a wide range of duty cycles depending on the place and purpose of their deployment. Vehicle fuel consumption directly depends on those use cases, which are ranging from patrolling during peace keeping operations to direct engagements in hostiles areas. Vehicle design should accommodate this wide range of operation modes to maximize the vehicle practicality during their service life. This paper aims to quantify the sensitivity of the powerpack design for a notional 15-ton series hybrid electric vehicle for two highly dynamic military drive cycles. The optimal design for a powerpack (engine coupled with a generator) will be separately determined for each of the use cases through a previously developed optimization routine that use the Genetic Algorithm. For each iteration of the Genetic Algorithm a design benchmarking was incorporated by using Dynamic Programming.