Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Cold Temperature Effects on Spark Plug Performance

1998-10-19
982725
Fouling spark plugs on an internal combustion engine is greatly influenced by cold temperatures, especially at older assembly plants where the vehicle is moved several times because of discontinuities in the assembly line. To transition the vehicle, the operator starts the vehicle, places it in drive and accelerates rapidly, then shuts the vehicle off. This process only lasts ten to fifteen seconds and does not allow the spark plug or engine to get to a high enough operating temperature to evaporate away the fuel, which fouls the spark plugs. A spark plug fouling test is devised and is used to investigate which properties of fuel play the most significant anti-fouling role. Some additives believed to have anti-fouling properties will also be investigated to determine their significance. The anti-fouling fuel will then be implemented at the assembly plants.
Technical Paper

Redesign of a Differential Housing for a Formula Car (FSAE)

1998-11-16
983077
A unique differential assembly was needed for the Lawrence Technological University (LTU) SAE Formula race car. Specifically, a differential was required that had torque sensing capabilities, perfect reliability, high strength, light weight, the ability to withstand inertia and shock loading, a small package, no leaks, the ability to support numerous components. In that regard, an existing differential was selected that had the torque sensing capabilities, but had deficiencies that needed to be fixed. Those deficiencies included the following: Differential unit was over 4 kg unmounted, with no housing. This was considered too heavy, when housed properly. Bearing surface was provided on only one end of the carrier. This design provides insufficient bearing surface to support either the differential housing or half-shafts The internal drive splines integral to the case are not optimized for a perpendicular drive/axle arrangement, such as, a chain drive.
Technical Paper

An Adjustable Aluminum Differential

2001-03-05
2001-01-0883
The 2000 Formula SAE Team at Lawrence Technological University (LTU) has designed a chain driven, three-piece aluminum differential unique from past years. This innovative design introduces an adjustable chain mount replacing conventional shackles. Made completely of aluminum, this device moves the entire rear drive train. The gear set remains to be limited slip with a student designed housing. The idea of an aluminum housing with manufactured gear set is a continued project at LTU. After cutting approximately 33% from the weight of the 1999 differential, the 2000 is geared toward a simpler, and smaller design, easier assembly and lighter weight. After reading this brief overview, the idea of this paper is to provide an understanding of the reasoning behind the choices made on the LTU driveline team. FIGURE 1
Technical Paper

Evolution of Intake Design for a Small Engine Formula Vehicle

2001-03-05
2001-01-1211
To obtain a maximum range for usable torque, Helmholtz theory is utilized to tune an Honda CBR 600 cc engine. The design objectives were to: 1) Increase performance by reducing pressure losses in the entire intake system; 2) Maximize the restrictor's design to increase airflow at lower pressure drops; 3) Improve throttle response through throttle body design and reduction of turbulence when full open; 4) Utilize runner design to improve tuning effects as predicted by Helmholtz resonance theory and; 5) Incorporate a plenum design with equal air distribution to all four cylinders.
Technical Paper

Aerodynamic Evaluation on Formula SAE Vehicles

2001-03-05
2001-01-1270
Aerodynamics plays an important role in the dynamic behavior of a vehicle. The purpose of this paper is to evaluate external and internal aerodynamics of the 1999 and 2000 Lawrence Technological University Formula SAE vehicles. The external aerodynamic study will be limited to form and interference drag and the evaluation of lift. The internal aerodynamics study will be limited to ram air to the intake, heat exchanger, and oil cooler.
Technical Paper

The Impact of Aerodynamics on Vehicle Performance in a Formula SAE Racing Style Vehicle

2001-11-12
2001-01-2744
Aerodynamic drag is the force that restricts the forward velocity of a vehicle. Sources of drag are form drag, interference drag, internal flow drag, surface friction, and induced drag. Aerodynamic drag directly impacts the fuel economy attainable by a vehicle. In the Formula SAE competition (FSAE), fuel economy is a factor during the endurance phase. This paper will focus on the effects of aerodynamic drag and how it impacts the fuel economy of a FSAE racing style vehicle. Using the Lawrence Technological University (LTU) 1999 and 2000 cars to study and evaluate various methods to reduce drag and optimize fuel economy. Theoretical and experimental methods will be used and the study will be limited to the effects of form and interference drag.
Technical Paper

Aerodynamic Drag and Fuel Economy in a Formula SAE Racing Style Vehicle

2001-08-20
2001-01-2554
Aerodynamic drag directly impacts the fuel economy attainable by a vehicle. In the Formula SAE competition (FSAE), fuel economy is a factor during the endurance phase. The focus of this paper is to study the effects of aerodynamic drag and how it impacts the fuel economy of a FSAE racing style vehicle. The Lawrence Technological University (LTU) 1999 and 2000 cars will be used in this study to evaluate various methods to reduce drag and improve fuel economy. Empirical methods will be used and the study will be limited to the effects of form and interference drag.
Technical Paper

Fatigue Life Improvement through the “NOVA” Process

2013-04-08
2013-01-1400
The experimental methods focused on utilizing the newly developed NOVA induction heating and hardening manufacturing process as an adapted method to produce high performance engine valve springs. A detailed testing plan was used to evaluate the expected and theorized possibility for fatigue life enhancement. An industry standard statistical analysis method and tools were employed to objectively substantiate the findings. Fatigue cycle testing using NOVA induction-hardened racing valve springs made of ultra-high tensile material were compared to data for springs with traditional heat treatment and those with standard processing. The results were displayed using Wöhler and modified Haigh fatigue life diagrams. The final analysis suggests that NOVA processed springs have a seemingly slight, yet significant benefit in fatigue life of 5 - 7% over springs processed through a competing method.
Technical Paper

Design of an Aluminum Differential for a Racing Style Car

2000-03-06
2000-01-1156
The 1999 Lawrence Technological University (LTU) drive train consists of a sprocket and chain assembly that delivers the torque, developed by a 600cc Honda F3 engine, to the rear wheels. The torque is transferred through a limited-slip, torque sensing differential unit comprised of a gear set in a student designed housing. The 1999 differential is a second-generation aluminum housing. The idea of using aluminum was first attempted with the 1998 team who successfully completed and used aluminum despite much complexity and a few design flaws. Therefore, in the LTU Formula Team's continuing effort to optimize the design, a new less complex design was conceived to house the gear set. This innovative design reduces the number of housing components from three in 1998, to two in 1999.
Technical Paper

Design of Formula SAE Suspension

2002-12-02
2002-01-3310
Formula SAE is a Student project that involves a complete design and fabrication of an open wheel formula-style racecar. This paper will cover the suspension geometry and its components, which include the control arm, uprights, spindles, hubs, and pullrods. The 2002 Lawrence Technological Universities Formula SAE car will be used as an example throughout this paper.
Technical Paper

Numerical Design of a Low Mass Differential Housing

1999-03-01
1999-01-0741
Lawrence Technological University's 1998 SAE Formula car needed a high performance differential assembly. The performance requirements of a competitive SAE Formula car differential are as follows: Torque sensing capabilities Perfect reliability High strength Low mass Ability to withstand inertia and shock loading Small package Leak proof housing Ability to support numerous components With these requirements in mind an existing differential was selected with the capability for torque sensing. This differential lacked the desired low mass, support, internal drive splines, and proper gearing protection. The differential was re-engineered to remedy the deficiencies. The internal gearing from the selected differential was used in an improved casing. This casing and it's position in the car, reduce the number of side-specific parts required as well as improving the performance. The new design significantly reduces the size and mass of the assembly.
Technical Paper

Alternate Fuels: Not Only for Automobiles Propane Conversion of a Residential Lawnmower

1999-03-01
1999-01-0281
The purpose of this paper is to present the design and assembly of a working prototype of an alternate fueled lawnmower. A variety of alternate fuels have been suggested to help reduce air quality problems. The conversion process from gasoline to Propane will be explained. To determine fuel consumption and developed horsepower, engine simulations were performed. Stoichiometric analysis was performed to determine and compare the products of combustion between Propane and gasoline. The prototype Propane fueled lawnmower is able to operate efficiently and with less emissions as compared with a comparable gasoline fueled lawnmower. Engine output has been reduced by 27%. By burning Propane, a relatively clean fuel, engine emissions have been reduced by 60% as compared to gasoline.
X