Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Wind Noise Measurements for Automotive Mirrors

2009-04-20
2009-01-0184
In order to understand the flow and wind noise characteristics generated by the outside rearview (OSRV) mirror, a series of wind noise measurements for two production mirrors was conducted at the GM Aerodynamics Lab (GMAL) wind tunnel. These measurements included the time-averaged static pressures, surface noise sources, and far field propagation noise. The data obtained in this investigation will be used for future CFD numerical validations. The two mirrors chosen for the test are the GMT360 (a truck mirror) and the GMX320 (a sedan mirror). The test mirror was mounted on an elevated table which was specially designed for the current project to avoid any significant flow boundary layer buildup on the wind tunnel floor. The test conditions reported in this paper include four inlet speeds of 30, 50, 70 and 90 mph at 0 yaw angle. To record the wind noise sources, nine surface flush-mount microphones were used.
Journal Article

Aerodynamics of a Pickup Truck: Combined CFD and Experimental Study

2009-04-20
2009-01-1167
This paper describes a computational and experimental effort to document the detailed flow field around a pickup truck. The major objective was to benchmark several different computational approaches through a series of validation simulations performed at Clemson University (CU) and overseen by those performing the experiments at the GM R&D Center. Consequently, no experimental results were shared until after the simulations were completed. This flow represented an excellent test case for turbulence modeling capabilities developed at CU. Computationally, three different turbulence models were employed. One steady simulation used the realizable k-ε model. The second approach was an unsteady RANS simulation, which included a turbulence closure model developed in-house. This simulation captured the unsteady shear layer rollup and breakdown over the front of the hood that was expected and seen in the experiments but unattainable with other off-the-shelf turbulence models.
Technical Paper

Comparison Between the Conventional Body-Fitted and the Lattice Boltzmann CFD Methods for the Flow around a Generic Pickup Truck

2008-04-14
2008-01-0323
Computational Fluid Dynamics (CFD) has gained popularity as a tool for many airflow situations including road vehicle aerodynamics. This trend, to bring CFD to bear on vehicle aerodynamic design issues, is appropriate and timely in view of the increasing competitive and regulative pressures being faced by the automotive industry. For a large portion of the engineering community, the primary source of CFD capabilities is through the purchase of commercial CFD codes. This paper summarizes the results of a series of benchmark external aerodynamic simulations that were carried out for a generic pickup truck model using two commercial CFD codes, namely Fluent and the PowerFLOW. For direct comparisons the computations and the experiments were performed for the same model (vehicle) geometry and under similar flow conditions.
Technical Paper

Experimental Investigation of the Near Wake of a Pick-up Truck

2003-03-03
2003-01-0651
The results of an experimental investigation of the flow over a pickup truck are presented. The main objectives of the study are to gain a better understanding of the flow structure in near wake region, and to obtain a detailed quantitative data set for validation of numerical simulations of this flow. Experiments were conducted at moderate Reynolds numbers (∼3×105) in the open return tunnel at the University of Michigan. Measured quantities include: the mean pressure on the symmetry plane, unsteady pressure in the bed, and Particle Image Velocimetry (PIV) measurements of the flow in the near wake. The unsteady pressure results show that pressure fluctuations in the forward section of the bed are small and increase significantly at the edge of the tailgate. Pressure fluctuation spectra at the edge of the tailgate show a spectral peak at a Strouhal number of 0.07 and large energy content at very low frequency.
Technical Paper

Transient Simulation of the Flow Field Around a Generic Pickup Truck

2003-03-03
2003-01-1313
A complete transient, three dimensional simulation of the flow-field around a generic pickup truck geometry is carried out. A 1/12-scale replica of an actual pickup truck, with simplified features such as a smooth underbody, is considered in the study. The purpose of the study is twofold. First, it seeks to improve our understanding of the complex flow field around a pickup truck, which is predominantly a bluff body with a prominent wake. To this end a detail description of the time-averaged pressure distribution on the vehicle body as well as time-averaged velocities in the wake of the truck is provided. Secondly, the study seeks to judge the accuracy with which modern CFD techniques can predict complex, practical, bluff-body wake flows. This is accomplished by making a close comparison of the time-averaged wake velocity profiles predicted by CFD with analogous measurements made in a wind tunnel experiment using particle image velocimetry.
Technical Paper

CFD Simulations for Flow Over Pickup Trucks

2005-04-11
2005-01-0547
Computational fluid dynamics (CFD) was used to simulate the flow field over a pickup truck. The simulation was based on a steady state formulation and the focus of the simulation was to assess the capabilities of the currently used CFD tools for vehicle aerodynamic development for pickup trucks. Detailed comparisons were made between the CFD simulations and the existing experiments for a generic pickup truck. It was found that the flow structures obtained from the CFD calculations are very similar to the corresponding measured mean flows. Furthermore, the surface pressure distributions are captured reasonably well by the CFD analysis. Comparison for aerodynamic drags was carried out for both the generic pickup truck and a production pickup truck. Both the simulations and the measurements show the same trends for the drag as the vehicle geometry changes, This suggests that the steady state CFD simulation can be used to aid the aerodynamic development of pickup trucks.
Technical Paper

Numerical Investigation of Road Vehicle Aerodynamics Using the Immersed Boundary RANS Approach

2005-04-11
2005-01-0546
This paper describes the computational results of the flow field around two vehicle geometries using the Immersed Boundary (IB) technique in conjunction with a steady RANS CFD solver. The IB approach allows the computation of the flow around objects without requiring the grid lines to be aligned with the body surfaces. In the IB approach instead of specifying body boundary conditions, a body force is introduced in the governing equations to model the effect of the presence of an object on the flow. This approach reduces the time necessary for meshing and allows utilization of more efficient and fast CFD solvers. The simulations are carried out for an SUV and a pickup truck models at a Reynolds number of 8×105. Cartesian meshes (non-uniform) with local grid refinement are used to increase the resolution close to the boundaries. The simulation results are compared with the existing measurements in terms of surface pressures, velocity profiles, and drag coefficients.
Technical Paper

A CFD Study of Drag Reduction Devices for a Full Size Production Pickup Truck

2015-04-14
2015-01-1541
Various drag reduction strategies have been applied to a full size production pickup truck to evaluate their effectiveness by using Computational Fluid Dynamics (CFD). The drag reduction devices evaluated in this study were placed at the rear end of the truck bed and the tailgate. Three types of devices were evaluated: (1) boat tail-like extended plates attached to the tailgate; (2) mid-plate attached to the mid-section of the tailgate and; (3) flat plates partially covering the truck bed. The effect of drag reduction by various combinations of these three devices are presented in this paper. Twenty-four configurations were evaluated in the study with the best achievable drag reduction of around 21 counts (ΔCd = 0.021). A detailed breakdown of the pressure differentials at the base of the truck is provided in order to understand the flow mechanism for the drag reductions.
X