Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

2007-10-29
2007-01-4075
Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Mini High Speed HCCI Engine Fueled with Ether: Load Range, Emission Characteristics and Optical Analysis

2007-08-05
2007-01-3606
Power supply systems play a very important role in everyday life applications. There are mainly two ways of producing energy for low power generation: electrochemical batteries and small engines. In the last few years, many improvements have been carried out in order to obtain lighter batteries with longer durations but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. An energy source constituted of an organic fuel with an energy density around 29 MJ/kg and a minimum overall efficiency of only 3.5% could surpass batteries. Nowadays, the most efficient combustion process is HCCI combustion which has the ability to combine a high energy conversion efficiency with low emission levels and a very low fuel consumption. The present paper describes an investigation carried out on a modified model airplane engine, on how a pure HCCI combustion behaves in a small volume, Vd = 4.11 cm3, at very high engine speeds (up to 17,500 [rpm]).
Technical Paper

Influence of Inlet Temperature and Hot Residual Gases on the Performances of a Mini High Speed Glow Plug Engine

2006-11-13
2006-32-0057
Nowadays the power supplying systems have a fundamental importance for all small and portable devices. For low power applications, there are two main ways for producing power: electrochemical batteries and mini engines. Even though in recent years many developments have been carried out in improving the design of batteries, the energy density of 1MJ/kg seems to be an asymptotic value. If the energy source is a hydrocarbon fuel, whose energy density is 46 MJ/kg, with an overall efficiency of only 2.5 % it is possible to surpass the electrochemical batteries. On the other hand, having a mini engine, as energy source, implies three main problems: vibrations, noise and emissions. A light (230 g) model airplane engine with a displacement volume of 4.11 cm3 and a geometrical compression ratio of 13.91 has been studied. The work carried out in this paper can be divided basically in three parts.
Technical Paper

Influence of the Wall Temperature and Combustion Chamber Geometry on the Performance and Emissions of a Mini HCCI Engine Fueled with Diethyl Ether

2008-04-14
2008-01-0008
Nowadays for small-scale power generation there are electrochemical batteries and mini engines. Many efforts have been done for improving the power density of the batteries but unfortunately the value of 1 MJ/kg seems to be asymptotic. If the energy source is an organic fuel which has an energy density of around 29 MJ/kg with a minimum overall efficiency of only 3.5%, this device would surpass the batteries. This paper is the fifth of a series of publications aimed to study the HCCI combustion process in the milli domain at high engine speed in order to design and develop VIMPA, Vibrating Microengine for Low Power Generation and Microsystems Actuation. Previous studies ranged from general characterization of the HCCI combustion process by using metal and optical engines, to more specific topics for instance the influence of the boundary layer and quenching distance on the quality of the combustion.
Technical Paper

Influence of Inlet Pressure, EGR, Combustion Phasing, Speed and Pilot Ratio on High Load Gasoline Partially Premixed Combustion

2010-05-05
2010-01-1471
The current research focuses in understanding how inlet pressure, EGR, combustion phasing, engine speed and pilot main ratio are affecting the main parameters of the combustion (e.g. efficiency, NOx, soot, maximum pressure rise rate) in the novel concept of injecting high octane number fuels in partially premixed combustion. The influence of the above mentioned parameters was studied by performing detailed sweeps at 32 bar fuel MEP (c.a. 16-18 bar gross IMEP); three different kinds of gasoline were tested (RON: 99, 89 and 69). The experiments were ran in a single cylinder heavy duty engine; Scania D12. At the end of these sweeps the optimized settings were computed in order to understand how to achieve high efficiency, low emissions and acceptable maximum pressure rise rate.
Technical Paper

Technologies for Carbon-Neutral Passenger Transport - a Comparative Analysis

2001-10-01
2001-01-3248
Road transport has become a large source of CO2 emission and accounted in 1998 for about 27% of the CO2 emission in Sweden. Efficient energy use and the use of renewable energy sources are main options for reducing CO2 emission from vehicles in the future. In this study, the use of energy carriers based on renewable energy sources in battery-powered electric vehicles (BPEVs), fuel-cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs) and internal combustion engine vehicles (ICEVs) is compared regarding energy efficiency, emission and cost. The cost calculations include energy, environmental and vehicle costs. The potential for non-technical measures to contribute to a reduction of road transport CO2 emission is also briefly discussed and related to the potential for technical measures. There is the potential to double the primary energy efficiency compared with the current level by utilizing vehicles with electric drivetrains.
Technical Paper

Automated IC Engine Model Development with Uncertainty Propagation

2011-04-12
2011-01-0237
This paper describes the development of a novel data model for storing and sharing data obtained from engine experiments, it then outlines a methodology for automatic model development and applies it to a state-of-the-art engine combustion model (including chemical kinetics) to reduce corresponding model parameter uncertainties with respect engine experiments. These challenges are met by adopting the latest developments in the semantic web to create a shared data model resource for the IC engine development community. The relevant data can be extracted and then used to set-up simulations for parameter estimation by passing it to the relevant application models. A methodology for incorporating experimental and model uncertainties into the model optimization procedure is presented.
Technical Paper

A Predictive Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-10-16
2006-01-3329
A previously presented robust and fast diagnostic NOx model was modified into a predictive model. This was done by using simple yet physically-based models for fuel injection, ignition delay, premixed heat release rate and diffusion combustion heat release rate. The model can be used both for traditional high temperature combustion and for high-EGR low temperature combustion. It was possible to maintain a high accuracy and calculation speed of the NOx model itself. The root mean square of the relative model error is 16 % and the calculation speed is around one second on a PC. Combustion characteristics such as ignition delay, CA50 and the general shape of the heat release rate are well predicted by the combustion model. The model is aimed at real time NOx calculation and optimization in a vehicle on the road.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
X