Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Vehicle Driving Cycle Simulation of a Pneumatic Hybrid Bus Based on Experimental Engine Measurements

In the study presented in this paper, a vehicle driving cycle simulation of the pneumatic hybrid has been conducted. The pneumatic hybrid powertrain has been modeled in GT-Power and validated against experimental data. The GT-Power engine model has been linked with a MATLAB/simulink vehicle model. The engine in question is a single-cylinder Scania D12 diesel engine, which has been converted to work as a pneumatic hybrid. The base engine model, provided by Scania, is made in GT-power and it is based on the same engine configuration as the one used in real engine testing. During pneumatic hybrid operation the engine can be used as a 2-stroke compressor for generation of compressed air during vehicle deceleration and during vehicle acceleration the engine can be operated as a 2-stroke air-motor driven by the previously stored pressurized air.
Technical Paper

Evaluation of the Operating Range of Partially Premixed Combustion in a Multi Cylinder Heavy Duty Engine with Extensive EGR

Partially Premixed Combustion (PPC) is a combustion concept by which it is possible to get low smoke and NOx emissions simultaneously. PPC requires high EGR levels and injection timings sufficiently early or late to extend the ignition delay so that air and fuel mix extensively prior to combustion. This paper investigates the operating region of single injection diesel PPC in a multi cylinder heavy duty engine resembling a standard build production engine. Limits in emissions and fuel consumption are defined and the highest load that fulfills these requirements is determined. Experiments are carried out at different engine speeds and a comparison of open and closed loop combustion control are made as well as evaluation of an extended EGR-cooling system designed to reduce the EGR temperature. In this study the PPC operating range proved to be limited.
Technical Paper

Partially Premixed Combustion at High Load using Gasoline and Ethanol, a Comparison with Diesel

This paper is the follow up of a previous work and its target is to demonstrate that the best fuel for a Compression Ignition engine has to be with high Octane Number. An advanced injection strategy was designed in order to run Gasoline in a CI engine. At high load it consisted in injecting 54 % of the fuel very early in the pilot and the remaining around TDC; the second injection is used as ignition trigger and an appropriate amount of cool EGR has to be used in order to avoid pre-ignition of the pilot. Substantially lower NOx, soot and specific fuel consumption were achieved at 16.56 bar gross IMEP as compared to Diesel. The pressure rise rate did not constitute any problem thanks to the stratification created by the main injection and a partial overlap between start of the combustion and main injection. Ethanol gave excellent results too; with this fuel the maximum load was limited at 14.80 bar gross IMEP because of hardware issues.
Technical Paper

Mini High Speed HCCI Engine Fueled with Ether: Load Range, Emission Characteristics and Optical Analysis

Power supply systems play a very important role in everyday life applications. There are mainly two ways of producing energy for low power generation: electrochemical batteries and small engines. In the last few years, many improvements have been carried out in order to obtain lighter batteries with longer durations but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. An energy source constituted of an organic fuel with an energy density around 29 MJ/kg and a minimum overall efficiency of only 3.5% could surpass batteries. Nowadays, the most efficient combustion process is HCCI combustion which has the ability to combine a high energy conversion efficiency with low emission levels and a very low fuel consumption. The present paper describes an investigation carried out on a modified model airplane engine, on how a pure HCCI combustion behaves in a small volume, Vd = 4.11 cm3, at very high engine speeds (up to 17,500 [rpm]).
Technical Paper

Multi-Output Control of a Heavy Duty HCCI Engine Using Variable Valve Actuation and Model Predictive Control

Autoignition of a homogeneous mixture is very sensitive to operating conditions, therefore fast control is necessary for reliable operation. There exists several means to control the combustion phasing of an Homogeneous Charge Compression Ignition (HCCI) engine, but most of the presented controlled HCCI result has been performed with single-input single-output controllers. In order to fully operate an HCCI engine several output variables need to be controlled simultaneously, for example, load, combustion phasing, cylinder pressure and emissions. As these output variables have an effect on each other, the controller should be of a structure which includes the cross-couplings between the output variables. A Model Predictive Control (MPC) controller is proposed as a solution to the problem of load-torque control with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure.
Technical Paper

Influence of the Compression Ratio on the Performance and Emissions of a Mini HCCI Engine Fueled Ether with Diethyl

Power supply systems play a very important role in applications of everyday life. Mainly, for low power generation, there are two ways of producing energy: electrochemical batteries and small engines. In the last few years many improvements have been carried out in order to obtain lighter batteries with longer duration but unfortunately the energy density of 1 MJ/kg seems to be an asymptotic value. If the energy source is an organic fuel with an energy density of around 29 MJ/kg and a minimum overall efficiency of only 3.5%, this device can surpass the batteries. Nowadays the most efficient combustion process is HCCI combustion which is able to combine high energy conversion efficiency and low emission levels with a very low fuel consumption. In this paper, an investigation has been carried out concerning the effects of the compression ratio on the performance and emissions of a mini, Vd = 4.11 [cm3], HCCI engine fueled with diethyl ether.
Technical Paper

Transient Control of a Multi Cylinder HCCI Engine During a Drive Cycle

This study applies a state feedback based Closed-Loop Combustion Control (CLCC) using Fast Thermal Management (FTM) on a multi cylinder Variable Compression Ratio (VCR) engine. At speeds above 1500 rpm is the FTM's bandwidth broadened by using the VCR feature of this engine, according to a predefined map, which is a function of load and engine speed. Below 1500 rpm is the PID based CLCC using VCR applied instead of the FTM while slow cylinder balancing is effectuated by the FTM. Performance of the two CLCC controllers are evaluated during an European EC2000 drive cycle, while HC, CO and CO2 emissions are measured online by a Fast Response Infrared (FRI) emission equipment. A load and speed map calculated for an 1.6L Opel Astra is used to get reference values for the dynamometer speed and the load control. The drive cycle test is initiated from a hot engine and hence no cold start is included. Commercial RON/MON 92/82 gasoline, which corresponds to US regular, is utilized.
Technical Paper

Balancing Cylinder-to-Cylinder Variations in a Multi-Cylinder VCR-HCCI Engine

Combustion initiation in an HCCI engine is dependent of several parameters that are not easily controlled like the temperature and pressure history in the cylinder. So achieving the same ignition condition in all the cylinders in a multi-cylinder engine is difficult. Factors as gas exchange, compression ratio, cylinder cooling, fuel supply, and inlet air temperature can differ from cylinder-to-cylinder. These differences cause both combustion phasing and load variations between the cylinders, which in the end affect the engine performance. Operating range in terms of speed and load is also affected by the cylinder imbalance, since misfiring or too fast combustion in the worst cylinders limits the load. The cylinder-to-cylinder variations are investigated in a multi-cylinder Variable Compression Ratio (VCR) engine, and the effect it has on the engine performance.
Technical Paper

An Air Hybrid for High Power Absorption and Discharge

An air hybrid is a vehicle with an ICE modified to also work as an air compressor and air motor. The engine is connected to two air reservoirs, normally the atmosphere and a high pressure tank. The main benefit of such a system is the possibility to make use of the kinetic energy of the vehicle otherwise lost when braking. The main difference between the air hybrid developed in this paper and earlier air hybrid concepts is the introduction of a pressure tank that substitutes the atmosphere as supplier of low air pressure. By this modification, a very high torque can be achieved in compressor mode as well as in air motor mode. A model of an air hybrid with two air tanks was created using the engine simulation code GT-Power. The results from the simulations were combined with a driving cycle to estimate the reduction in fuel consumption.