Refine Your Search

Search Results

Technical Paper

Measurements of the Lubricant Film Thickness in the Cylinder of a Firing Diesel Engine Using LIF

A laser-induced fluorescence (LIF) system has been developed to obtain measurements of the instantaneous lubricant film thickness in the piston-cylinder assembly of a firing single-cylinder, direct-injection diesel engine. Measurements were made at top-dead-centre (TDC), mid-stroke and bottom-dead-centre (BDC) position by means of three fibre optic probes inserted into the cylinder liner and mounted flush with its surface. Following extensive repeatability tests, the cycle-averaged lubricant film thickness was estimated for different multi-grade oils as a function of engine speed, load and temperature. The results quantified the dependence of the film thickness ahead, under and behind the piston rings on oil chemistry and viscometric properties, thus confirming the important role of the LIF technique in the development and formulation of new engine oils.
Technical Paper

Cold-start Measurements of the Lubricant Film Thickness in the Cylinder of a Firing Diesel Engine

Laser induced fluorescence (LIF) was used in the cylinder liner of a firing single-cylinder direct-injection diesel engine to characterise the development of the lubricant film during the first 200 engine cycles under cold-start conditions. The results have provided information on the rate of oil film development which has proved to be a highly unsteady process due to the complicated oil transport processes through the ring-pack.
Technical Paper

Flow and Spray Investigation in Direct Injection Gasoline Engines

An investigation into the spray structure generated by two swirl pressure atomisers under various operating conditions in a constant-volume chamber and the in-cylinder flow pattern in an optical research direct-injection gasoline engine has been performed using CCD camera and laser Doppler velocimetry, respectively. The results provided detailed information about the effect of back pressure on the spray structure generated by the two injectors and the in-cylinder flow field which the sprays encounter following fuel injection into the cylinder during the induction and compression strokes.
Technical Paper

Spray and Combustion Development in a Four-Valve Optical DI Diesel Engine

An optical single-cylinder four-valve high speed DI Diesel engine equipped with a high-pressure electronic fuel injection system has been used to obtain information about the spray development, combustion and exhaust emissions (NOx and smoke levels) for a range of operating conditions corresponding to engine speeds between 600 and 1800 rpm, injection pressures up to 1200 bars and fuel injection quantities from idle to full load. Two six-hole vertical mini-sac type injection nozzles with different hole sizes have been employed in order to investigate the effect of nozzle hole diameter on spray formation, combustion and exhaust emissions. Parallel to the experimental programme, a computational investigation of the fuel flow distribution inside the injection system and of the subsequent spray characteristics has been performed in order to assist in the interpretation of the results.
Technical Paper

Effect of Inlet Parameters on the Flow Characteristics in a Four-Stroke Model Engine

The flow structure in a four-stroke model engine motored at 200 rpm with a compression ratio of 3.5 has been investigated. Ensemble-averaged axial and swirl mean and rms velocities have been obtained by laser-Doppler anemometry downstream of an axisymmetrically located single valve with 30 and 60 degree seat angles and various lifts, with and without induction swirl. In all cases, the intake-generated flow structure in the axial plane disappears by the time the inlet valve closes and results in nearly homogeneous turbulence during compression with levels of 0.5–0.7 times the mean piston speed. The swirling flow, however, which is induced by means of vanes, persists through the compression stroke, evolving from a spiralling motion early during intake into solid body type of rotation near TDC of compression, with associated swirl ratios increasing with valve lift.
Technical Paper

Three-Dimensional Flow Field in Four-Stroke Model Engines

Ensemble-averaged and in-cycle axial and swirl velocities have been measured by laser Doppler anemometry in the three-dimensional flow field of a four-stroke model engine motored at 200 rpm with a compression ratio of 6.7 and various cylinder head and piston geometries. The inlet configurations comprised an axisymmetric port with a shrouded valve and an off-centre port with two valve and swirl generating vane geometries. The piston configurations comprised flat, cylindrical and re-entrant axisymmetric piston-bowls. The results indicate that with the off-centre port a complex vortical flow pattern is generated during induction, which later either collapses in the absence of induction swirl or is transformed into a single rotating vortex in the transverse plane when swirl is present. The axisymmetric port with the shrouded valve gives rise to a double vortex structure and higher turbulence levels at TDC of compression compared to the off-centre port.
Technical Paper

The Application on Laser Rayleigh Scattering to a Reciprocating Model Engine

The Rayleigh light scattering technique has been used to quantify the mean and fluctuating concentration of a passive scalar used to simulate fuel injection in a reciprocating, two-stroke model engine motored at 200 rpm in the absence of compression. The transient concentration field, which results from injection of Freon-12 vapour through the centre of an axisymmetrically located permanently open valve, has been investigated for injection timings of 40 deg. before and at top-dead-centre as a function of spatial position and crank angle. The purpose-built Rayleigh system, with gated digital data acquisition and software dust particle filtering, was first evaluated in a Freon-12 free jet by comparing results to those obtained with a sampling probe.
Technical Paper

Transient Characteristics of Multi-Hole Diesel Sprays

The spatial and temporal characteristics of a diesel spray injected into the atmosphere through a multi-hole nozzle used in small DI Diesel engines have been investigated by laser techniques as a function of pump speed and load. The results showed that spray tip penetration and velocity depend on injection frequency rather than injected volume and the spray is asymmetric during the early and main part of the injection period. In the time/space domain different structures have been identified within the injection period, with the early injection period characterized by a well atomized cloud of droplets, the main period by the spray head and a dense core and the late injection period by the disintegrating dense core and the spray tail. IN DIRECT-INJECTION DIESEL ENGINES for passenger cars, fuel is injected through multi-hole nozzles at high pressure to promote mixing with the rapidly swirling air inside the combustion chamber.
Technical Paper

Coolant Flow in the Cylinder Head/Block of the Ford 2.5L DI Diesel Engine

Local measurements of the mean and rms velocities have been obtained by laser Doppler velocimetry in the coolant passages of a transparent model of a Ford 2.5L diesel cylinder head and block at a steady flowrate of 6.83 × 10-4 M3/s. The simulation of the coolant fluid by a mixture of hydrocarbon fluids at a predetermined constant temperature allowed accurate matching of the refractive index to that of the acrylic model, thus providing optical access for LDV measurements of the internal flow in sensitive areas where cooling is essential to prevent metal-fatigue failure. The results were obtained in sufficient detail to allow further validation of CFD coolant flow models.
Technical Paper

Visualization of Flow/Flame Interaction in a Constant-Volume Combustion Chamber

A visualization study using shadowgraphy was performed in an optically-accessible, cylindrical constant-volume combustion chamber to identify the mechanism of flow/flame interaction in spark-ignited, lean propane-air mixtures. The effect of the flow on flame initiation and propagation was examined by varying the pre-ignition mean flow and turbulence within a range typical of modern four-valve spark-ignition (SI) engines, as well as the spark plug orientation relative to the mean flow. The initial flame development was quantified in terms of 2-D images which provided information about the projected flame area and the displacement of the flame center as a function of flow conditions, time from the spark initiation and spark plug orientation. The results showed that high mean flow velocities and turbulence levels can shorten combustion duration in lean mixtures and that the positioning of the ground electrode can have an important effect on the initial kernel formation.
Technical Paper

Gaseous Simulation of Diesel-Type Sprays in a Motored Engine

The effect of fuel injection on the flow and the spray/swirl and spray/piston interactions in direct-injection diesel engines have been investigated by simulating diesel sprays with gaseous jet(s) injected through centrally located, single- and multi-hole nozzles into the quiescent and swirling air of a motored engine running at 200rpm and incorporating a flat piston and a re-entrant piston-bowl. The axisymmetric velocity field with and without ‘fuel’ injection was characterised by laser velocimetry near TDC of compression in terms of spatially-resolved ensemble-averaged axial and swirl velocities, the ‘fuel’ concentration field was quantified by laser Rayleigh scattering and the two-dimensional flow was visualised by gated still photography using hollow microballoons as light scatterers.
Technical Paper

Swirl Center Precession in Engine Flows

The origin and development of swirl center precession in engine flows has been investigated in a steady flow rig, with and without a porous plate simulating a stationary piston, and in a model engine motored at 200rpm; swirl, in all cases, was generated by means of 60° vanes located in the axisymmetric inlet port. The swirl center performs a helical motion that originates as an instability in the forced-vortex core from its interaction with the axial flow at a free stagnation point and develops in the engine from the piston towards the cylinder head; an opposite trend has been observed in the steady flow case with the open-ended cylinder. In the ensemble-averaged measurements, swirl center precession has been identified by the increased tangential velocity fluctuations around the off-centre zero swirl velocity.
Technical Paper

Flow and Combustion in a Hydra Direct-Injection Diesel Engine

Measurements of flow, spray, combustion and performance characteristics are reported for a Hydra direct-injection diesel, based on the Ford 2.5 L, engine and equipped with a variable-swirl port, a unit fuel injector and optical access through the liner and piston. The results provide links between the pre-combustion and combustion flow and, at the same time, between purpose-built single-cylinder optical engines and multi-cylinder production engines of nearly identical combustion chamber geometry. In particular, the spray penetration was found to depend on engine speed, rather than load, with velocities up to around 260 m/s at atmospheric pressure and temperature which are reduced by a factor of 2.5 under operating conditions and seem to be unaffected by swirl. The duration of combustion was reduced with increasing swirl and ignition delay increased linearly with engine speed.
Technical Paper

Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark-Ignition Engines

The ability of certain induction systems to enhance turbulence levels at the time of ignition, through formation of long-lived tumbling vortices on the plane of the valve and cylinder axes, has been investigated in a two-valve spark-ignition engine by rotating the intake port at 90° and 45° to the orientation of production directed ports. Detailed measurements of the three velocity components, obtained by laser velocimetry, revealed that the 90° port generated a pure tumble motion, with a maximum tumbling vortex ratio of 1.5 at 295°CA, zero swirl, and 42% turbulence enhancement relative to the standard configuration, while the 45° port gave rise to a combined tumble/swirl structure with a maximum tumbling vortex ratio of 0.5 at 285°CA, swirl ratio of 1.0 at TDC, and turbulence enhancement of 24%. The implications of the two types of flow structures for combustion are discussed.
Technical Paper

Modeling of Pressure-Swirl Atomizers for GDI Engines

A new simulation approach to the modeling of the whole fuel injection process within a common-rail fuel injection system for direct-injection gasoline engines, including the pressure-swirl atomizer and the conical hollow-cone spray formed at the nozzle exit, is presented. The flow development in the common-rail fuel injection system is simulated using an 1-D model which accounts for the wave dynamics within the system and predicts the actual injection pressure and injection rate throughout the nozzle. The details of the flow inside its various flow passages and the discharge hole of the pressure-swirl atomizer are investigated using a two-phase CFD model which calculates the location of the liquid-gas interface using the VOF method and estimates the transient formation of the liquid film developing on the walls of the discharge hole due to the centrifugal forces acting on the swirling fluid.
Technical Paper

Structure of high-pressure diesel sprays

A comprehensive set of computational and experimental results for high- pressure diesel sprays are presented and discussed. The test cases investigated include injection of diesel into air under both atmospheric and high pressure/temperature chamber conditions, injection against pressurized and cross-flowing CF6 simulating respectively the density and flow conditions of a diesel engine at the time of injection, as well as injection into the piston bowl of both research and production turbocharged high-speed DI diesel engines. A variety of high-pressure injection systems and injector nozzles have been used including mechanical and electronic high-pressure pumps as well as common-rail systems connected to nozzles incorporating a varying number of holes with diameters ranging from conventional to micro-size.
Technical Paper

Correlation between Spark Ignition Characteristics and Flame Development in a Constant-Volume Combustion Chamber

The electrical characteristics of transistorized coil ignition (TCI) and capacitor discharge ignition (CDI) systems were investigated in spark-ignited quiescent and flowing propane/air mixtures within an optically-accessible, cylindrical constant-volume combustion chamber. Under quiescent flow conditions, the initial pressure, temperature and equivalence ratio of the mixture as well as the spark gap width and geometry were varied systematically in order to examine the relationship between ignition characteristics and flame initiation and development. The effect of the flow in the spark gap on the electrical characteristics of the ignition system, mixture ignitability and flame development was also examined by varying the pre-ignition mean flow and turbulence as well as the spark plug orientation relative to the mean flow.
Technical Paper

Effect of Fuel Injection Processes on the Structure of Diesel Sprays

A diesel spray model has been developed and validated against experimental data obtained for different injection and surrounding gas conditions to allow investigation of the relative importance of the different physical processes occurring during the spray development. The model is based on the Eulerian-Lagrangian approximation and the Navier-Stokes equations, simulating the gas motion, are numerically solved on a collocated non-uniform curvilinear non-orthogonal grid, while the spray equation is solved numerically using a Lagrangian particle tracking method. The injection conditions are determined by another recently developed model calculating the flow in the fuel injection system, the sac volume and injection holes area which accounts for the details of the injection velocity, the fuel injection rate per injection hole and occurrence of hole cavitation. Thus, differences between the sprays from inclined multihole injectors can be simulated and analysed.
Technical Paper

An Approach to Charge Stratification in Lean-Burn, Spark- Ignition Engines

A constant-volume combustion chamber was used to examine injection of a small quantity of slightly rich fuel/air mixture towards the spark plug around the time of ignition, in an overall very lean mixture rotating at velocities representative of modern spark-ignition engines. The results show that it is possible to achieve 100% ignitability with overall air-fuel ratios in excess of 50 and much faster burn rates than those with initially homogenous mixtures of the same equivalence ratio with high swirl and turbulence. The advantages of this method of local charge stratification have been demonstrated in terms of both pressure measurements and shadowgraphs of the early flame development while the transient characteristics of the injected rich mixture at the spark plug gap were monitored by a fast flame ionization detector.
Technical Paper

Development of a Piston-Ring Lubrication Test-Rig and Investigation of Boundary Conditions for Modelling Lubricant Film Properties

A test-rig has been developed to simulate under idealised conditions the lubricating action between the piston-ring and the cylinder-liner in reciprocating engines. Complications arising in production engine piston-assemblies such as lubricant starvation, ring and piston dynamics, thermal and elastic deformations and blowby can thus be avoided so that the lubricant film characteristics are examined in isolation. The lubricant film thickness and friction at the piston-ring/liner interface were simultaneously measured throughout the stroke as a function of speed and load and compared with the solution of the Reynolds equation for a range of boundary conditions. The examined conditions included the Swift-Stieber (Reynolds), the separation and limiting cases of the Floberg and the Coyne & Elrod boundary conditions using a numerically efficient general purpose program.