Refine Your Search

Search Results

Technical Paper

Coolant Flow in the Cylinder Head/Block of the Ford 2.5L DI Diesel Engine

1991-02-01
910300
Local measurements of the mean and rms velocities have been obtained by laser Doppler velocimetry in the coolant passages of a transparent model of a Ford 2.5L diesel cylinder head and block at a steady flowrate of 6.83 × 10-4 M3/s. The simulation of the coolant fluid by a mixture of hydrocarbon fluids at a predetermined constant temperature allowed accurate matching of the refractive index to that of the acrylic model, thus providing optical access for LDV measurements of the internal flow in sensitive areas where cooling is essential to prevent metal-fatigue failure. The results were obtained in sufficient detail to allow further validation of CFD coolant flow models.
Technical Paper

Transient Characteristics of Multi-Hole Diesel Sprays

1990-02-01
900480
The spatial and temporal characteristics of a diesel spray injected into the atmosphere through a multi-hole nozzle used in small DI Diesel engines have been investigated by laser techniques as a function of pump speed and load. The results showed that spray tip penetration and velocity depend on injection frequency rather than injected volume and the spray is asymmetric during the early and main part of the injection period. In the time/space domain different structures have been identified within the injection period, with the early injection period characterized by a well atomized cloud of droplets, the main period by the spray head and a dense core and the late injection period by the disintegrating dense core and the spray tail. IN DIRECT-INJECTION DIESEL ENGINES for passenger cars, fuel is injected through multi-hole nozzles at high pressure to promote mixing with the rapidly swirling air inside the combustion chamber.
Technical Paper

Evaluation of the Predictive Capability of Diesel Nozzle Cavitation Models

2007-04-16
2007-01-0245
The predictive capability of Lagrangian and Eulerian multi-dimensional computational fluid dynamics models accounting for the onset and development of cavitation inside Diesel nozzle holes is assessed against experimental data. These include cavitation images available from a real-size six-hole mini-sac nozzle incorporating a transparent window as well as high-speed/CCD images and LDV measurements of the liquid velocity inside an identical large-scale fully transparent nozzle replica. Results are available for different cavitation numbers, which correspond to different cavitation regimes forming inside the injection hole. Discharge coefficient measurements for various real-size nozzles operating under realistic injection pressures are also compared and match well with models' predictions.
Technical Paper

Spray Structure Generated by Multi-Hole Injectors for Gasoline Direct-Injection Engines

2007-04-16
2007-01-1417
The performance of multi-hole injectors designed for use in second-generation direct-injection gasoline engines has been characterised in a constant-volume chamber. Two types of multi-hole injector have been used: the first has 11 holes, with one hole on the axis of the injector and the rest around the axis at 30 degrees apart, and the second has 6 asymmetric holes located around the nozzle axis. Measurements of droplet axial and radial velocity components and their diameter were obtained using a 2-D phase Doppler anemometer (PDA) at injection pressures up to 120 bar, chamber pressures from atmospheric to 8 bar, and ambient temperatures. Complementary spray visualisation made use of a pulsed light and a CCD camera synchronised with the injection process.
Technical Paper

Internal Flow and Cavitation in a Multi-Hole Injector for Gasoline Direct-Injection Engines

2007-04-16
2007-01-1405
A transparent enlarged model of a six-hole injector used in the development of emerging gasoline direct-injection engines was manufactured with full optical access. The working fluid was water circulating through the injector nozzle under steady-state flow conditions at different flow rates, pressures and needle positions. Simultaneous matching of the Reynolds and cavitation numbers has allowed direct comparison between the cavitation regimes present in real-size and enlarged nozzles. The experimental results from the model injector, as part of a research programme into second-generation direct-injection spark-ignition engines, are presented and discussed. The main objective of this investigation was to characterise the cavitation process in the sac volume and nozzle holes under different operating conditions. This has been achieved by visualizing the nozzle cavitation structures in two planes simultaneously using two synchronised high-speed cameras.
Technical Paper

Internal Flow and Spray Characteristics of Pintle-Type Outwards Opening Piezo Injectors for Gasoline Direct-Injection Engines

2007-04-16
2007-01-1406
The near nozzle exit flow and spray structure generated by an enlarged model of a second generation pintle type outwards opening injector have been investigated under steady flow conditions as a function of flow-rate and needle lift. A high resolution CCD camera and high-speed video camera have been employed in this study to obtain high-magnification images of the internal nozzle exit flow in order to identify the origin of string ligaments/droplets formation at the nozzle exit. The images of the flow around the nozzle seat area showed clearly that air was entrained from outside into the nozzle seat area under certain flow operating conditions (low cavitation number, CN); the formed air pockets inside the annular nozzle proved to be the main cause of the breaking of the fuel liquid film into strings as it emerged from the nozzle with a structure consisting of alternating thin and thick liquid filaments.
Technical Paper

Structure of high-pressure diesel sprays

2001-09-23
2001-24-0009
A comprehensive set of computational and experimental results for high- pressure diesel sprays are presented and discussed. The test cases investigated include injection of diesel into air under both atmospheric and high pressure/temperature chamber conditions, injection against pressurized and cross-flowing CF6 simulating respectively the density and flow conditions of a diesel engine at the time of injection, as well as injection into the piston bowl of both research and production turbocharged high-speed DI diesel engines. A variety of high-pressure injection systems and injector nozzles have been used including mechanical and electronic high-pressure pumps as well as common-rail systems connected to nozzles incorporating a varying number of holes with diameters ranging from conventional to micro-size.
Technical Paper

Cavitation Initiation, Its Development and Link with Flow Turbulence in Diesel Injector Nozzles

2002-03-04
2002-01-0214
The initiation and development of cavitation in enlarged transparent acrylic models of six-hole nozzles for direct injection Diesel engines has been visualised by a high-speed digital video camera in a purpose-built refractive index matching test rig. The obtained high temporal resolution images have allowed improved understanding of the origin of the cavitation structures in Diesel injector nozzles and clarification of the effect of sac geometry (conical mini-sac vs. VCO) on cavitation initiation and development in the nozzle holes. The link between cavitation and flow turbulence in the sac volume and, more importantly, in the injection holes has been quantified through measurements of the flow by laser Doppler velocimetry (LDV) at a number of planes as a function of the Reynolds and cavitation numbers.
Technical Paper

Nozzle Hole Film Formation and its Link to Spray Characteristics in Swirl-Pressure Atomizers for Direct Injection Gasoline Engines

2002-03-04
2002-01-1136
The numerical methodology used to predict the flow inside pressure-swirl atomizers used with gasoline direct injection engines and the subsequent spray development is presented. Validation of the two-phase CFD models used takes place against film thickness measurements obtained from high resolution CCD-based images taken inside the discharge hole of a pressure swirl atomizer modified to incorporate a transparent hole extension. The transient evolution of the film thickness and its mean axial and swirl velocity components as it emerges from the nozzle hole is then used as input to a spray CFD model predicting the development of both non-evaporating and evaporating sprays under a variety of back pressure and temperature conditions. Model predictions are compared with phase Doppler anemometry measurements of the temporal and spatial variation of the droplet size and velocity as well as CCD spray images.
Technical Paper

Prediction of Liquid and Vapor Penetration of High Pressure Diesel Sprays

2006-04-03
2006-01-0242
A dense-particle Eulerian-Lagrangian stochastic methodology, able to resolve the dense spray formed at the nozzle exit has been applied to the simulation of evaporating diesel sprays. Local grid refinement at the area where the spray evolves allows use of cells having sizes from 0.6 down to 0.075mm. Mass, momentum and energy source terms between the two phases are spatially distributed to cells found within a distance from the droplet centre; this has allowed for grid-independent interaction between the Eulerian and the Lagrangian phases to be reached. Additionally, various models simulating the physical processes taking place during the development of sprays are considered. The cavitating nozzle flow is used to estimate the injection velocity of the liquid while its effect on the spray formation is considered through an atomisation model predicting the initial droplet size.
Technical Paper

Analysis of the Flow in the Nozzle of a Vertical Multi-Hole Diesel Engine Injector

1998-02-23
980811
An enlarged transparent model of a six-hole vertical diesel injector has been manufactured in order to allow flow measurements inside the sac volume and the injection holes to be obtained using a combination of laser Doppler velocimetry (LDV) and the refractive index matching technique under steady state conditions. The measurement points were concentrated in the sac volume close to the entrance of the injection holes as well as inside them on a vertical plane passing through the axis of two injection holes for two different needle lifts. The velocity flow field was characterized in terms of the mean velocity and the turbulent intensity. The results revealed that, under certain conditions, cavitation may occur in the recirculation zone formed at the entrance to the hole since the pressure in this region can reach the value of the vapor pressure of the flowing liquid; this was found to strongly depend on the needle lift and eccentricity.
Technical Paper

Analysis of Consecutive Fuel Injection Rate Signals Obtained by the Zeuch and Bosch Methods

1993-03-01
930921
The injection rate signals from a commercial diesel fuel injection system, based on a distributor pump driven by a DC motor, were characterised independently and consecutively by two injection rate meters based on the Zeuch and Bosch methods. The signals were first analysed in terms of their shot-to-shot variations over 64 consecutive injections and the correlations between needle lift and injection rate over a range of pump speeds and loads quantified by Fast Fourier Transform. A direct comparison of the injection rate signals on a cycle-resolved basis was achieved by connecting two consecutive injectors from the pump-line-nozzle injection system to a Bosch- and a Zeuch-based injection rate meters. The signals were acquired over a large number of injections in terms of mean and rms of the injected quantity, mean injection rate, maximum injection rate, average cumulative fuel injected and average injection duration.
Technical Paper

Spray Characteristics of Single- and Two-Spring Diesel Fuel Injectors

1993-03-01
930922
The spatial and temporal characteristics of the non-evaporating diesel sprays injected into the atmosphere through two pump-pipe-nozzle systems used in small DI diesel engines have been investigated by laser-single-beam deflection and phase-Doppler anemometry (PDA). The injectors used for these tests comprised a single-spring and a prototype two-spring multihole-type nozzle. The results provided quantitative information about the effect that the second spring exerts on injection duration and spray characteristics, i.e. it increases injection duration and, at the same time, improves fuel atomisation during the main injection period.
Technical Paper

Computer Simulation of Fuel Injection Systems for DI Diesel Engines

1992-10-01
922223
The continuity and momentum equations for a pump-pipe-nozzle fuel injection system have been solved by a computer simulation program employing both the Runge-Kutta method and the more widely used method of characteristics. This allows the prediction of fluid phenomena and the dynamics of the mechanical components based on the geometry of the FIE system. The simulation includes the effects of possible cavitation, system leakage as well as variations in fuel density and bulk modulus. The computer model has been made as flexible as possible by using a modular format and inputting the system parameters from external files or dialog boxes. Experimentation was done on a Bosch VE type distributor pump supplying a multi-hole type nozzle which allowed preliminary evaluation of the model by comparing the predicted and measured injection rates and line pressures over a range of pump speeds and loads.
Technical Paper

Evaluation of Pump Design Parameters in Diesel Fuel Injection Systems

1995-02-01
950078
A computer model solving the 1-D flow in a typical fuel injection system for direct-injection diesel engines is presented. A Bosch distributor - type VE pump connected to four Stanadyne pencil - type nozzles has been used to validate the computer model over a wide range of operating conditions. Validation of the developed computer code has been performed for eight representative test cases. The predicted values which were compared with the experimental ones include the pumping chamber pressure, the line pressure, the needle lift and the injection rate. Results using as input the measured pumping chamber pressure are also presented in order to identify the error in the injection rate signal attributed to the difference between the simulated and the experimental pumping chamber pressure. In addition, the total fuel injection quantity for pump speeds between 500 and 2000 rpm and lever positions between 20% to 100% was calculated and compared with measurements.
Technical Paper

Application of a FIE Computer Model to an In-Line Pump-Based Injection System for Diesel Engines

1997-02-24
970348
A computer model simulating the flow in fuel injection systems has been used in order to investigate the fuel injection processes in an in-line pump-based fuel injection system for direct-injection diesel engines. The model is one-dimensional and it is based on the mass and momentum conservation equations for the simulation of the fuel flow and on the equilibrium of forces for the simulation of the mechanical movements of the valves present in the system. The fuel injection system tested comprised an in-line pump whose characteristics were examined by using as input the measured line pressure signal and by modeling the pump operation itself as well as the fuel flow through single- and two-stage injectors. For the validation of the model, extensive comparison with experimental data has been performed for a wide range of pump operating conditions.
Technical Paper

Effect of Multi-Injection Strategy on Cavitation Development in Diesel Injector Nozzle Holes

2005-04-11
2005-01-1237
The effect of multiple-injection strategy on nozzle hole cavitation has been investigated both experimentally and numerically. A common-rail Diesel injection system, used by Toyota in passenger car engines, has been employed together with a double-shutter CCD camera in order to visualise cavitation inside a submerged and optically accessible (in one out of the six holes) real-size VCO nozzle. Initially the cavitation development was investigated in single injection events followed by flow images obtained during multiple injections consisting of a pilot and a main injection pulse. In order to identify the effect of pilot injection on cavitation development during the main injection, the dwell time between the injection events was varied between 1.5-5ms for different pilot injection quantities. The extensive test matrix included injection pressures of 400 and 800bar and back pressures ranging from 2.4 up to 41bar.
Technical Paper

Effect of Inlet Parameters on the Flow Characteristics in a Four-Stroke Model Engine

1982-02-01
820750
The flow structure in a four-stroke model engine motored at 200 rpm with a compression ratio of 3.5 has been investigated. Ensemble-averaged axial and swirl mean and rms velocities have been obtained by laser-Doppler anemometry downstream of an axisymmetrically located single valve with 30 and 60 degree seat angles and various lifts, with and without induction swirl. In all cases, the intake-generated flow structure in the axial plane disappears by the time the inlet valve closes and results in nearly homogeneous turbulence during compression with levels of 0.5–0.7 times the mean piston speed. The swirling flow, however, which is induced by means of vanes, persists through the compression stroke, evolving from a spiralling motion early during intake into solid body type of rotation near TDC of compression, with associated swirl ratios increasing with valve lift.
Technical Paper

Three-Dimensional Flow Field in Four-Stroke Model Engines

1984-10-01
841360
Ensemble-averaged and in-cycle axial and swirl velocities have been measured by laser Doppler anemometry in the three-dimensional flow field of a four-stroke model engine motored at 200 rpm with a compression ratio of 6.7 and various cylinder head and piston geometries. The inlet configurations comprised an axisymmetric port with a shrouded valve and an off-centre port with two valve and swirl generating vane geometries. The piston configurations comprised flat, cylindrical and re-entrant axisymmetric piston-bowls. The results indicate that with the off-centre port a complex vortical flow pattern is generated during induction, which later either collapses in the absence of induction swirl or is transformed into a single rotating vortex in the transverse plane when swirl is present. The axisymmetric port with the shrouded valve gives rise to a double vortex structure and higher turbulence levels at TDC of compression compared to the off-centre port.
Technical Paper

Transient Characteristics of Single-Hole Diesel Sprays

1989-02-01
890314
Diesel fuel was injected through a pintle nozzle into quiescent ambient air and the transient characteristics of the spray were examined as a function of injection pump speed. The laser-based techniques characterised the spray in terms of its transient structure, tip penetration, droplet axial mean and rms velocities and average droplet size. The results, when correlated with the fuel line pressure and nozzle exit conditions, revealed the presence of four regimes in the transient spray development: an early injection period representing the first stage of droplet formation, the main injection period associated with the formation and break up of a dense core and representing the second stage of droplet formation, a late injection period corresponding to the collapse of the dense core and a post injection period where, depending on the injection conditions, liquid ligaments and/or large droplets are present near the nozzle and may give rise to a third stage of droplet formation.
X