Refine Your Search

Topic

Search Results

Standard

USE OF TERMS YIELD STRENGTH AND YIELD POINT

1991-06-01
HISTORICAL
J450_199106
The purpose of this SAE Recommended Practice is to describe the terms yield strength and yield point. Included are definitions for both terms and recommendations for their use and application.
Standard

Use of Terms Yield Strength and Yield Point

2002-02-27
HISTORICAL
J450_200202
The purpose of this SAE Recommended Practice is to describe the terms yield strength and yield point. Included are definitions for both terms and recommendations for their use and application.
Standard

HIGH-STRENGTH, HOT-ROLLED STEEL PLATES, BARS, AND SHAPES

1993-11-01
HISTORICAL
J1442_199311
This SAE Recommended Practice covers six levels of high strength carbon and high-strength low-alloy steel plates, bars, and shapes for structural use. The six strength levels are 290, 345, 415, 450, 485, and 550 MPa or 42, 50, 60, 65, 70, and 80 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. Because the chemical compositions may vary significantly among the producers, despite the required mechanical properties being the same, it is important that the fabricator consult with the producer to determine the relative effects of the producer's composition on the forming, welding, and field service requirements.
Standard

HIGH STRENGTH CARBON AND ALLOY DIE DRAWN STEELS

1981-07-01
HISTORICAL
J935_198107
This SAE Recommended Practice is intended to provide basic information on properties and characteristics of high strength carbon and alloy steels which have been subjected to special die drawing. This includes both cold drawing with heavier-than-normal drafts and die drawing at elevated temperatures.
Standard

High-Strength Carbon and Alloy Die Drawn Steels

2002-02-27
HISTORICAL
J935_200202
This SAE Recommended Practice is intended to provide basic information on properties and characteristics of high-strength carbon and alloy steels which have been subjected to special die drawing. This includes both cold drawing with heavier-than-normal drafts and die drawing at elevated temperatures.
Standard

HIGH STRENGTH CARBON AND ALLOY DIE DRAWN STEELS

1990-06-01
HISTORICAL
J935_199006
This SAE Recommended Practice is intended to provide basic information on properties and characteristics of high strength carbon and alloy steels which have been subjected to special die drawing. This includes both cold drawing with heavier-than-normal drafts and die drawing at elevated temperatures.
Standard

Mechanical Properties of Heat Treated Wrought Steels

2002-02-27
HISTORICAL
J413_200202
The figures in this SAE Information Report illustrate the principle that, regardless of composition, steels of the same cross-sectional hardness produced by tempering after through hardening will have approximately the same longitudinal1 tensile strength at room temperature. Figure 1 shows the relation between hardness and longitudinal tensile strength of 0.30 to 0.50% carbon steels in the fully hardened and tempered, as rolled, normalized, and annealed conditions. Figure 2 showing the relation between longitudinal tensile strength and yield strength, and Figure 3 illustrating longitudinal tensile strength versus reduction of area, are typical of steels in the quenched and tempered condition. Figure 3 shows the direct relationship between ductility and hardness and illustrates the fact that the reduction of area decreases as hardness increases, and that, for a given hardness, the reduction of area is generally higher for alloy steels than for plain carbon steels.
Standard

MECHANICAL PROPERTIES OF HEAT TREATED WROUGHT STEELS

1990-06-01
HISTORICAL
J413_199006
The figures in this SAE Information Report illustrate the principle that, regardless of composition, steels of the same cross sectional hardness produced by tempering after through hardening, will have approximately the same longitudinal1 tensile strength at room temperature. Figure 1 shows the relation between hardness and longitudinal tensile strength of 0.30 to 0.50% carbon steels in the fully hardened and tempered, as rolled, normalized, and annealed conditions. Figure 2 showing the relation between longitudinal tensile strength and yield strength, and Figure 3 illustrating longitudinal tensile strength versus reduction of area, are typical of steels in the quenched and tempered condition. Figure 3 shows the direct relationship between ductility and hardness and illustrates the fact that the reduction of area decreases as hardness increases, and that, for a given hardness, the reduction of area is generally higher for alloy steels than for plain carbon steels.
X