Refine Your Search

Search Results

Viewing 1 to 16 of 16
Technical Paper

Studying the Influence of Direct Injection on PCCI Combustion and Emissions at Engine Idle Condition Using Two Dimensional CFD and Stochastic Reactor Model

2008-04-14
2008-01-0021
A detailed chemical model was implemented in the KIVA-3V two dimensional CFD code to investigate the effects of the spray cone angle and injection timing on the PCCI combustion process and emissions in an optical research diesel engine. A detailed chemical model for Primary Reference Fuel (PRF) consisting of 157 species and 1552 reactions was used to simulate diesel fuel chemistry. The model validation shows good agreement between the predicted and measured pressure and emissions data in the selected cases with various spray angles and injection timings. If the injection is retarded to -50° ATDC, the spray impingement at the edge of the piston corner with 100° injection angle was shown to enhance the mixing of air and fuel. The minimum fuel loss and more widely distributed fuel vapor contribute to improving combustion efficiency and lowering uHC and CO emissions in the engine idle condition.
Technical Paper

Effect of Nozzle Geometry on the Common-Rail Diesel Spray

2002-05-06
2002-01-1625
Diesel injections with various nozzle geometries were tested to investigate the spray characteristics by optical imaging techniques. Sac-nozzle and VCO nozzle with single guided needle coupled with rotary-type mechanical pump were compared in terms of macroscopic spray development and microscopic behavior. These nozzles incorporated with common-rail system were tested to see the effect of high pressure injection. Detailed investigation into spray characteristics from the holes of VCO nozzles, mostly with double guided needle, was performed. A variety of injection hole geometries were tested and compared to give tips on better injector design. Different hole sizes and taper ratio, represented as K factor, were studied through comprehensive spray imaging techniques. Global characteristics of a diesel spray, such as spray penetration, spray angle and its pattern, were observed from macroscopic images.
Technical Paper

Dimethyl Ether (DME) Spray Characteristics Compared to Diesel in a Common-Rail Fuel Injection System

2002-10-21
2002-01-2898
Dimethyl Ether (DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in compression-ignition engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the intrinsic properties of the DME. Experimental study of the DME and conventional diesel spray employing a common-rail type fuel injection system with a sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. A CCD camera was employed to capture time series of spray images, so that spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. Intermittent hesitating DME spray appeared at injection pressures of 25MPa and 40MPa in both atmospheric and 3MPa chamber pressures.
Technical Paper

Simulation of Fuel/Air Mixture Formation for Heavy Duty Liquid Phase LPG Injection (LPLI) Engines

2003-03-03
2003-01-0636
Submodels are developed for injection, evaporation and wall impingement of a liquid LPG spray. The injection model determines the quality of fuel as two-phase choke flow at the nozzle exit. Wind tunnel experiments show the spray penetration more sensitive to ambient flow velocity than to injection pressure. Most evaporation occurs during choking, while heat transfer from surrounding air has a negligible effect on downstream droplet sizes. Three dimensional simulation shows that the bathtub cavity is better than the dog-dish cavity for stable flame propagation in lean-burn conditions. The injection timing during the IVC period has a negligible effect, while injection during an intake stroke enhances fuel/air mixing to result in more homogeneous cylinder charge.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

2013-10-14
2013-01-2547
Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

Diesel Knock Visualization and Frequency Analysis of Premixed Charge Compression Ignition Combustion with a Narrow Injection Angle

2013-04-08
2013-01-0906
In this study, premixed charge compression ignition (PCCI) combustion was implemented using an injector that had a narrow injection angle of 70° and a moderately early injection timing of -40° crank angle after top dead center (CA ATDC). In-cylinder pressure measurements and high-speed direct imaging of the flame were performed in an optically accessible single-cylinder diesel engine. Frequency analysis of the acquired in-cylinder pressure data was carried out to obtain the frequency range of diesel knock. Meanwhile, image segmentation and a tracking algorithm based on YCbCr color space were implemented to determine the frequency range of diesel knock from the obtained high-speed image. The results show that the frequency of diesel knock was dominated by the range from 13 kHz to 15 kHz. Still, frequency with low power existed down until 7 kHz. The frequencies of the area movement were shown to be 13 kHz and, in some cases, 8.67 kHz.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

Hydraulic Simulation and Experimental Analysis of Needle Response and Controlled Injection Rate Shape Characteristics in a Piezo-driven Diesel Injector

2006-04-03
2006-01-1119
The More precise control of the multiple-injection is required in common-rail injection system of direct injection diesel engine to meet the low NOx emission and optimal PM filter system. The main parameter for obtaining the multiple-injections is the mechanism controlling the injector needle energizing and movement. In this study, a piezo-driven diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code and to evaluate the effect of this control capability on spray formation processes. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results.
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
Technical Paper

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer

2005-05-11
2005-01-2092
One of the major problems limiting the accuracy of piezoelectric transducers for cylinder pressure measurements in an internal-combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer. An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The deformation and the resulting pressure difference due to thermal shock are mainly a function of the change in surface temperature and the equation includes two model constants. In order to calibrate these two constants, the pressure inside the cylinder of a diesel engine was measured simultaneously using two types of pressure transducers, in addition to instantaneous wall temperature measurement.
Technical Paper

Effect of Injection Parameters on the Combustion and Emission Characteristics in a Compression Ignition Engine Fuelled with Waste Cooking Oil Biodiesel

2013-10-14
2013-01-2662
An experimental study was conducted to investigate the impact of injection parameters on the combustion and emission characteristics in a compression ignition engine fuelled with neat waste cooking oil (WCO) biodiesel. A single-cylinder diesel engine equipped with common-rail system was used in this research. The test was performed over two engine loads at an engine speed of 800 r/min. Injection timing was varied from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) at two different injection pressures (80 and 160 MPa). Based on in-cylinder pressure, heat release rate was calculated to analyze the combustion characteristics. Carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and smoke were measured to examine the emission characteristics. The results showed that the indicated specific fuel consumption (ISFC) of WCO biodiesel was higher than that of diesel. The ISFC was increased as the injection timing was advanced and injection pressure was increased.
Technical Paper

Effect of Breathing Characteristics on the Performance in Spark-Ignition Engines

2000-06-12
2000-05-0036
Adaptive valve timing control is one of the promising techniques to accomplish the optimized mixture formation and combustion depending on the load and speed, which is needed to meet the future challenges of reducing fuel consumption and exhaust emissions. The behavior and the effect of adaptive valve timing control system has been investigated by computer simulation, which simulates the gas dynamics in engines. These programs are typically one-dimensional including complex flow features as ‘special’ boundaries. A code adopting 2-step Lax-Wendroff method with artificial damping terms called FCT(Flux Corrected Transport), was developed to investigate the influence of operational and design parameters on the performance of engines. The effects of adaptive valve timing control system on volumetric efficiency or engine torque, and pumping loss were investigated. It increased low end torque by about 6%, and reduced pumping loss drastically at low load, high engine speed conditions.
Technical Paper

Performance of Prototype High Pressure Swirl Injector Nozzles for Gasoline Direct Injection

1999-10-25
1999-01-3654
Prototype intermittent swirl-generating nozzles for gasoline direct injection application were fabricated by modifying MPI injector nozzles. Design parameters include geometric configuration of nozzle internal flow passage such as orifice diameter and length, needle geometry and swirler passage designs. Operating parameters are considered such as injection pressure, ambient pressure, injected fuel mass and duration of injector opening. Performances of the nozzles have been characterized in terms of static and transient flow rate, initial and overall spray angle, penetration, mean droplet diameter and drop size distribution. Computational fluid dynamic modeling of internal flow for the nozzles provided additional insight in addition to the experimental measurements. Sprays from the prototype nozzle used for measurement in this study exhibited the general features of swirl injection sprays.
Technical Paper

Gas Flows Through the Inter-Ring Crevice and Their Influence on UHC Emissions

1999-05-03
1999-01-1533
Influence of the inter-ring crevice, the volume between the top and second piston rings, on unburned hydrocarbon (UHC) emission was experimentally and numerically investigated. The ultimate goal of this study was to estimate the level of UHC emission induced by the blow-up of inter-ring mixture, i.e., unburned gases trapped in the inter-ring crevice. In the experiments, the inter-ring mixture was extracted to the crankcase during the late period of expansion and the early period of exhaust stroke through the engraved grooves on the lower part of cylinder wall. Extraction of the mixture resulted in the significant reductions of UHC emission in proportion to the increments of blowby flow rate, without any losses in efficiency and power. This experimental study has confirmed the importance of inter-ring crevice on UHC emission in an SI engine and established a relationship between the inter-ring mixture and UHC emission.
Technical Paper

The Effect of Engine Parameters on In-Cylinder Pressure Reconstruction from Vibration Signals Based on a DNN Model in CNG-Diesel Dual-Fuel Engine

2023-04-11
2023-01-0861
In marine or stationary engines, consistent engine performance must be guaranteed for long-haul operations. A dual-fuel combustion strategy was used to reduce the emissions of particulates and nitrogen oxides in marine engines. However, in this case, the combustion stability was highly affected by environmental factors. To ensure consistent engine performance, the in-cylinder pressure measured by piezoelectric pressure sensors is generally measured to analyze combustion characteristics. However, the vulnerability to thermal drift and breakage of sensors leads to additional maintenance costs. Therefore, an indirect measurement via a reconstruction model of the in-cylinder pressure from engine block vibrations was developed. The in-cylinder pressure variation is directly related to the block vibration; however, numerous noise sources exist (such as, valve impact, piston slap, and air flowage).
Technical Paper

Effect of the Multiple Injection on Stratified Combustion Characteristics in a Spray-Guided DISI Engine

2011-09-11
2011-24-0059
In this study, the single-cylinder engine experiment was carried out to investigate the effect of multiple injections on stratified combustion characteristics in a spray-guided direct injection spark ignition engine. The engine was operated at 1200 rpm. The total injection quantity applied was 11 mg/stroke to represent a low-load condition. Single injection and multiple injection were tested. Split ratio of each multiple strategies were 1:1 for double injection and 1:1:1 for the triple injection respectively. Dwell time between each injection was set to 200 μs. In the result of engine experiment with the single injection, indicated mean effective pressure was increased as injection timing was retarded to top dead center due to the increased effective work. However, the retardation of the injection timing was limited by the misfire occurrence resulted from the locally rich mixture generation under the high ambient pressure.
X