Refine Your Search


Search Results

Technical Paper

Effect of Injection Strategy on Low Temperature - Conventional Diesel Combustion Mode Transition

Low Temperature Combustion (LTC) is known to be feasible only in lower load ranges so in real world application of LTC, engine operation mode should frequently change back and forth between LTC mode in lower loads and conventional mode in higher loads. In this research, effect of injection strategy on smoothness and emissions during mode transition in a single cylinder heavy duty diesel engine is studied. The Exhaust Gas Recirculation (EGR) line was controlled by a servo-valve capable of opening or closing the EGR loop within only one engine cycle. Ten cycles after the EGR valve closure were taken as the transition period during which injection timing and quantity were shifted in various ways (i.e. injection strategies) and the effect on Indicated Mean Effective Pressure (IMEP) stability and emissions was studied.
Technical Paper

Influence of EGR and Pilot Injection on PCCI Combustion in a Single-Cylinder Diesel Engine

The effect of pilot injection and exhaust gas recirculation (EGR) on premixed charge compression ignition (PCCI) combustion was investigated in a single-cylinder direct-injection diesel engine with low engine speed and low load. The injection timing of PCCI combustion was fixed at 25 ~ 30 crank angle degree before top dead center (°CA BTDC) based on the ignition delay and power output. The level of oxides of nitrogen (NOx) emissions of PCCI combustion was 68% lower than that of conventional diesel combustion owing to the reduction of near-stoichiometric region which is well known as the main source of NOx formation. However, the indicated mean effective pressure (IMEP), hydrocarbon (HC), particulate matter (PM) and carbon monoxide (CO) emissions deteriorated compared with conventional diesel combustion because of early injection, advanced combustion phase and lowered combustion temperature. EGR has been applied to PCCI combustion.
Technical Paper

Effects of EGR and DME Injection Strategy in Hydrogen-DME Compression Ignition Engine

The compression ignition combustion fuelled with hydrogen and dimethyl-ether was investigated. Exhaust gas recirculation was applied to reduce noise and nitrogen oxide (NOx) emission. When dimethyl-ether was injected earlier, combustion showed two-stage ignitions known as low temperature reaction and high temperature reaction. With advanced dimethyl-ether injection, combustion temperature and in-cylinder pressure rise were lowered which resulted in high carbon monoxide and hydrocarbon emissions. However, NOx emission was decreased due to relatively low combustion temperature. The engine combustion showed only high temperature reaction when dimethyl-ether was injected near top dead center. When exhaust gas recirculation gas was added, the in-cylinder pressure and heat release rate were decreased. However, it retarded combustion phase resulting in higher indicated mean effective pressure.
Technical Paper

Mode Transition between Low Temperature Combustion and Conventional Combustion with EGR and Injection Modulation in a Diesel Engine

Mode transition between low temperature combustion and conventional combustion was investigated in a direct injection diesel engine. Low temperature diesel combustion was realized by means of high exhaust gas recirculation rate (69~73%) and early injection timing (-28~ -16 crank angle degree after top dead center) compared with those (20% exhaust gas recirculation rate and -8 crank angle degree after top dead center) of conventional combustion. Tests were carried out at different engine speeds and injection pressures. Exhaust gas recirculation rate was changed transiently by controlling each throttle angle for fresh air and exhaust gas recirculation to implement mode transition. Various durations for throttle transition were applied to investigate the effect of speed change of exhaust gas recirculation rate on the characteristics of mode transition.
Technical Paper

Improvement of Premixed Compression Ignition Combustion using Various Injector Configurations

Premixed compression ignition (PCI) combustion was implemented using advanced injection strategy and exhaust gas recirculation in a direct-injection single-cylinder diesel engine. The injection timing swept experiment using a baseline injector, which had an injection angle of 146° and 8 nozzle holes, obtained three types of combustion regime: conventional diesel combustion for an injection timing of 10° CA (crank angle) BTDC (before top dead center), PCI combustion for an injection timing of 40° CA BTDC and homogeneous charge compression ignition (HCCI) combustion for an injection timing of 80° CA BTDC. PCI combustion can be verified by burn duration analysis. The burn duration, which was defined as the period from 10% to 90% of the accumulated heat release, was very short in PCI combustion but not in the others. PCI combustion with an injection timing of 40° CA BTDC was achieved in a range of an exhaust gas recirculation (EGR) rate from 0% to around 40%.
Technical Paper

The Effects of Two-Stage Fuel Injection on Dimethyl-ether (DME) Homogeneous Charge Compression Ignition Engine Combustion

Two-stage injection strategy was studied in dimethyl-ether homogeneous charge compression ignition engine combustion. An early direct injection, main injection, was applied to form a premixed charge followed by the second injection after the start of heat release. Experiments were carried out in a single-cylinder direct-injection diesel engine equipped with a common-rail injection system, and the combustion performance and exhaust emissions were tested with the various second injection timings and quantities. Engine speed was 1200 rpm, and the load was fixed at 0.2 MPa IMEP. Main injection timing for homogeneous mixture was fixed at −80 CAD, and the fuel quantity was adjusted to the fixed load. Second injection quantity was varied from 1 to 5 mg, and the timing was selected according to the heat release rate of the HCCI combustion without second injection.
Technical Paper

The Effect of Injection Location of DME and LPG in a Dual Fuel HCCI Engine

Dimethyl ether (DME) as a high cetane number fuel and liquefied petroleum gas (LPG) as a high octane number fuel were supplied together to evaluate the controllability of combustion phase and improvement of power and exhaust emission in homogeneous charge compression ignition (HCCI) engine. Each fuel was injected at the intake port and in the cylinder separately during the same cycle, i.e., DME in the cylinder and LPG at the intake port, or vice versa. Direct injection timing was varied from 200 to 340 crank angle degree (CAD) while port injection timing was fixed at 20 CAD. In general, the experimental results showed that DME direct injection with LPG port injection was the better way to increase the IMEP and reduce emissions. The direct injection timing of high cetane number fuel was important to control the auto-ignition timing because the auto-ignition was occurred at proper area, where the air and high cetane number fuel were well mixed.
Technical Paper

The Effect of LPG Composition on Combustion and Performance in a DME-LPG Dual-fuel HCCI Engine

The effect of the composition of propane (C₃H₈) and butane (C₄H₁₀) in liquefied petroleum gas (LPG) was investigated in a dual-fuel HCCI engine fueled with di-methyl ether (DME) and LPG. The composition of LPG affects DME-LPG dual fuel HCCI combustion due to the difference in the physical properties of propane that and butane such as octane number, auto-ignition temperature and heat of vaporization. DME was injected directly into the cylinder at various injection timing from 160 to 350 crank angle degrees (CAD). LPG was injected at the intake port with a fixed injection timing at 20 CAD. It was found that power output was increased with propane ratio. This gain in power output resulted from increased expansion work due to the better anti-knock properties of propane. However, higher propane ratio made combustion efficiency decrease because of the suppression in low temperature reaction of DME which determines heat release amount of high temperature reaction.
Technical Paper

Operating Range of Low Temperature Diesel Combustion with Supercharging

Low temperature diesel combustion with a large amount of exhaust gas recirculation in a direct injection diesel engine was investigated. Tests were carried out under various engine speeds, injection pressures, injection timings, and injection quantities. Exhaust emissions and brake specific fuel consumption were measured at different torque and engine speed conditions. High rates of exhaust gas recirculation led to the simultaneous reduction of nitrogen oxide and soot emissions due to a lower combustion temperature than conventional diesel combustion. However, hydrocarbon and carbon monoxide emissions increased as the combustion temperature decreased because of incomplete combustion and the lack of an oxidation reaction. To overcome the operating range limits of low temperature diesel combustion, increased intake pressure with a modified turbocharger was employed.
Technical Paper

Diesel Knock Visualization and Frequency Analysis of Premixed Charge Compression Ignition Combustion with a Narrow Injection Angle

In this study, premixed charge compression ignition (PCCI) combustion was implemented using an injector that had a narrow injection angle of 70° and a moderately early injection timing of -40° crank angle after top dead center (CA ATDC). In-cylinder pressure measurements and high-speed direct imaging of the flame were performed in an optically accessible single-cylinder diesel engine. Frequency analysis of the acquired in-cylinder pressure data was carried out to obtain the frequency range of diesel knock. Meanwhile, image segmentation and a tracking algorithm based on YCbCr color space were implemented to determine the frequency range of diesel knock from the obtained high-speed image. The results show that the frequency of diesel knock was dominated by the range from 13 kHz to 15 kHz. Still, frequency with low power existed down until 7 kHz. The frequencies of the area movement were shown to be 13 kHz and, in some cases, 8.67 kHz.
Technical Paper

Effect of Multiple Injection Strategies on Emission and Combustion Characteristics in a Single Cylinder Direct-Injection Optical Engine

The effect of multiple injections in a heavy-duty diesel engine was investigated by focusing on single-pilot injection and double-pilot injection strategies with a wide injection timing range, various injection quantity ratios, and various dwell times. Combustion characteristics were studied through flame visualization and heat release analyses as well as emissions tests. Single-pilot injection resulted in a dramatic reduction in nitrogen oxide and smoke emissions when the injection timing was advanced over 40° CA before the start of injection (BSOI) due to combustion with partially premixed charge compression ignition. A brown-colored flame area, which indicates a very fuel-rich mixture region, was rarely detected when more fuel was injected during single-pilot injection. However, hydrocarbon emission increased up to intolerable levels because fuel wetting on the cylinder wall increased.
Technical Paper

Effect of the Multiple Injection on Stratified Combustion Characteristics in a Spray-Guided DISI Engine

In this study, the single-cylinder engine experiment was carried out to investigate the effect of multiple injections on stratified combustion characteristics in a spray-guided direct injection spark ignition engine. The engine was operated at 1200 rpm. The total injection quantity applied was 11 mg/stroke to represent a low-load condition. Single injection and multiple injection were tested. Split ratio of each multiple strategies were 1:1 for double injection and 1:1:1 for the triple injection respectively. Dwell time between each injection was set to 200 μs. In the result of engine experiment with the single injection, indicated mean effective pressure was increased as injection timing was retarded to top dead center due to the increased effective work. However, the retardation of the injection timing was limited by the misfire occurrence resulted from the locally rich mixture generation under the high ambient pressure.
Technical Paper

Operating Characteristics of DME-Gasoline Dual-fuel in a Compression Ignition Engine at the Low Load Condition

Combustion and emission characteristics were investigated in a compression ignition engine with dual-fuel strategy using dimethyl ether (DME) and gasoline. Experiments were performed at the low load condition corresponding to indicated mean effective pressure of 0.45 MPa. DME was directly injected into the cylinder and gasoline was injected into the intake manifold during the intake stroke. The proportion of DME in the total input energy was adjusted from 10% to 100%. DME DME injection timing was widely varied to investigate the effect of injection timing on the combustion phase. Injection pressure of DME was varied from 20 MPa to 60 MPa. Exhaust gas recirculation (EGR) was controlled from 0% to 60% to explore the effect of EGR on the combustion and emission characteristics. As DME proportion was decreased with the increased portion of gasoline, the combustion efficiency was decreased but thermal efficiency was increased.
Technical Paper

Effects of Single and Double Post Injections on Diesel PCCI Combustion

In this study, single and double post injections were applied to diesel premixed charge compression ignition (PCCI) combustion to overcome the drawbacks those are high level of hydrocarbons (HC) and carbon monoxide (CO) emissions in a single-cylinder direct-injection diesel engine. The operating conditions including engine speed and total injection quantity were 1200 rpm and 12 mg/cycle, which are the representative of low engine speed and low load. The main injection timing of diesel PCCI combustion was set to 28 crank angle degree before top dead center (CAD BTDC). This main injection timing showed 32% lower level of nitric oxides (NOx) level and 8 CAD longer ignition delay than those of conventional diesel combustion. However, the levels of HC and CO were 2.7 and 3 times higher than those of conventional diesel combustion due to over-lean mixture and wall wetting of fuel.
Technical Paper

The Influence of Fuel Injection Pressure and Intake Pressure on Conventional and Low Temperature Diesel Combustion

The influence of fuel injection pressure and intake pressure on conventional and low temperature diesel combustion was investigated in a light duty diesel engine. The in-cylinder pressure and exhaust emissions were measured and analyzed in each operating condition. The two combustion regimes were classified in terms of intake oxygen concentrations, which were adjusted by varying the amount of exhaust gas recirculation. The fuel injection quantity and injection timing were fixed in order to minimize the influencing factors. Fuel injection pressures of 40 MPa and 120 MPa were used to verify the effect of the fuel injection pressure in both combustion regimes. The injection pressure significantly affected the combustion phase in the low temperature diesel combustion regime due to the longer premixing time relative to the conventional diesel combustion regime.
Technical Paper

Effect of Injection Parameters on the Combustion and Emission Characteristics in a Compression Ignition Engine Fuelled with Waste Cooking Oil Biodiesel

An experimental study was conducted to investigate the impact of injection parameters on the combustion and emission characteristics in a compression ignition engine fuelled with neat waste cooking oil (WCO) biodiesel. A single-cylinder diesel engine equipped with common-rail system was used in this research. The test was performed over two engine loads at an engine speed of 800 r/min. Injection timing was varied from −25 to 0 crank angle degree (CAD) after top dead center (aTDC) at two different injection pressures (80 and 160 MPa). Based on in-cylinder pressure, heat release rate was calculated to analyze the combustion characteristics. Carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and smoke were measured to examine the emission characteristics. The results showed that the indicated specific fuel consumption (ISFC) of WCO biodiesel was higher than that of diesel. The ISFC was increased as the injection timing was advanced and injection pressure was increased.
Technical Paper

Effects of Hydrogen Ratio and EGR on Combustion and Emissions in a Hydrogen/Diesel Dual-Fuel PCCI Engine

The effects of hydrogen ratio and exhaust gas recirculation (EGR) on combustion and emissions in a hydrogen/diesel dual-fuel premixed charge compression ignition (PCCI) engine were investigated. The control of combustion phasing could be improved using hydrogen enrichment and EGR due to the retarded combustion phasing with a higher hydrogen ratio. The indicated mean effective pressure (IMEP) was increased with a higher hydrogen ratio because the hydrogen enrichment intensified the high temperature reactions and thus decreased the combustion duration. Hydrocarbon (HC) and carbon monoxide (CO) emissions were reduced significantly in a hydrogen/diesel dual-fuel PCCI mode with a similar NOx emissions level as that of the diesel PCCI mode.
Technical Paper

Assessment of Soot Particles in an Exhaust Gas for Low Temperature Diesel Combustion with High EGR in a Heavy Duty Compression Ignition Engine

The characteristics of soot particles in an exhaust gas for low temperature diesel combustion (LTC) compared with conventional combustion in a compression ignition engine were experimentally investigated by the elemental and thermogravimetric analysis (TGA). Morphology of soot particles was also studied by the transmission electron microscopy (TEM). From the result of the TGA, the water can be evaporated until about 150°C for both combustion regimes. The soot particles for LTC contained more volatile hydrocarbons, which can be easily evaporated from 200°C to 420°C compared with conventional diesel combustion. The soot oxidation for conventional combustion occurs up to 600°C, on the other hand the particles for LTC is oxidized below 520°C. Elemental analysis showed higher oxygen weight fraction resulted from the oxygenated hydrocarbon for the soot particles in LTC. TEM has shown primary particles to be in a diameter range of 20 to 50 nm for conventional diesel combustion.
Technical Paper

Spray and Combustion Visualization of Gasoline and Diesel under Different Ambient Conditions in a Constant Volume Chamber

Spray and combustion of gasoline and diesel were visualized under different ambient conditions in terms of pressure, temperature and density in a constant volume chamber. Three different ambient conditions were selected to simulate the three combustion regimes of homogeneous charge compression ignition, premixed charge compression ignition and conventional combustion. Ambient density was varied from 3.74 to 23.39 kg/m3. Ambient temperature at the spray injection were controlled to the range from 474 to 925 K. Intake oxygen concentration was also modulated from 15 % to 21 % in order to investigate the effects of intake oxygen concentrations on combustion characteristics. The injection pressure of gasoline and diesel were modulated from 50 to 150 MPa to analyze the effect of injection pressure on the spray development and combustion characteristics. Liquid penetration length and vapor penetration length were measured based on the methods of Mie-scattering and Schileren, respectively.
Technical Paper

Influence of the Injector Geometry at 250 MPa Injection in a Light-Duty Diesel Engine

This paper investigated the influence of the injector nozzle geometry on fuel consumption and exhaust emission characteristics of a light-duty diesel engine with 250 MPa injection. The engine used for the experiment was the 0.4L single-cylinder compression ignition engine. The diesel fuel injection equipment was operated under 250MPa injection pressure. Three injectors with nozzle hole number of 8 to 10 were compared. As the nozzle number of the injector increased, the orifice diameter decreased 105 μm to 95 μm. The ignition delay was shorter with larger nozzle number and smaller orifice diameter. Without EGR, the particulate matter(PM) emission was lower with larger nozzle hole number. This result shows that the atomization of the fuel was improved with the smaller orifice diameter and the fuel spray area was kept same with larger nozzle number. However, the NOx-PM trade-offs of three injectors were similar at higher EGR rate and higher injection pressure.