Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Journal Article

Quantification of Shot-to-Shot Variation in Single Hole Diesel Injectors

2015-04-14
2015-01-0936
Recent advancements in x-ray radiography diagnostics for direct injection sprays at Argonne's Advanced Photon Source have allowed absorption measurements of individual spray events, in addition to ensemble-averaged measurements. These measurements offer insight into the shot-to-shot variation of these sprays in the near-nozzle, spray formation region. Three single hole diesel injectors are studied across various injection and ambient pressures, spanning 14 different conditions. We calculated two dimensional maps of the standard deviation in line of sight mass distribution between individual spray events. These illuminated the spatial and temporal extent of variability between spray events. Regions of large fluctuations were observed to move downstream during the initial spray period and reached a steady state location after this initial transient.
Technical Paper

Time Resolved, Three Dimensional Mass Distribution of Diesel Sprays Measured with X-Ray Radiography

2009-04-20
2009-01-0840
Most previous measurements of diesel sprays have yielded few details regarding the near-nozzle structure of the sprays. X-ray radiography measurements have provided quantitative, time-resolved measurements of spray behavior, but the radiography data are projections of the actual fuel distribution. In this study, diesel sprays from two axial, single-hole nozzles are measured using x-ray radiography from several viewing angles. A model-based reconstruction is used to determine the actual density distribution from the projected data. The spray from the hydroground nozzle is eccentric and relatively dense, while the spray from the non-hydroground nozzle is asymmetric and far less dense. Even several mm from the nozzles, the calculated density values are high enough to call into question the assumptions underlying many standard CFD spray models.
Technical Paper

X-Ray Measurements of High Pressure Diesel Sprays

2001-03-05
2001-01-0531
A quantitative and time-resolved technique has been developed to probe the fuel distribution very near the nozzle of a high-pressure diesel injector. This technique uses the absorption of synchrotron x-rays to measure the fuel mass with good time and position resolution. The penetrating power of x-rays allows measurements that are difficult with other techniques, such as quantitative measurements of the mass and penetration measurements of the trailing edge of the spray. Line-of-sight measurements were used to determine the fuel density as a function of time. The high time resolution and quantitative nature of the measurement also permit an accurate measure of the instantaneous mass flow rate through the nozzle.
Technical Paper

Time-Resolved and Quantitative Characterization of Highly Transient Gasoline Sprays by X-Radiography

2002-06-03
2002-01-1893
Using synchrotron x-radiography and mass deconvolution techniques, this work reveals strikingly interesting structural and dynamic characteristics of the direct injection (DI) gasoline hollow-cone sprays in the near-nozzle region. Employed to measure the sprays, x-radiography allows quantitative determination of the fuel distribution in this optically impenetrable region with a time resolution of better than 1 μs, revealing the most detailed near-nozzle mass distribution of a DI gasoline fuel spray ever detected. Based on the x-radiographs of the spray collected from four different perspectives, enhanced mathematical and numerical analyses were developed to deconvolute the mass density of the gasoline hollow-cone spray. This leads to efficient and accurate regression curve fitting of the measured experimental data to obtain essential parameters of the density distribution that are then used in reconstructing the cross-sectional density distribution at various times and locations.
X