Refine Your Search

Topic

Search Results

Standard

Oil Cooler Application Testing and Nomenclature

1985-11-01
HISTORICAL
J1468_198511
This SAE Recommended Practice is applicable to oil-to-air oil coolers installed on mobile or stationary equipment. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluid, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results. For information regarding application testing of oil-to-water oil coolers for heat transfer performance, see SAE J2414.
Standard

Radiator Nomenclature

1988-08-01
HISTORICAL
J631_198808
This SAE Standard documents standard nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
Standard

Radiator Nomenclature

1993-04-01
HISTORICAL
J631_199304
This SAE Standard documents nomenclature in common use for various types of radiator and radiator core construction, as well as for various radiator-related accessories.
Standard

Waste Heat Recovery System Thermal Management

2020-02-24
CURRENT
J3173_202002
Waste heat recovery (WHR) systems are used in vehicles and machines powered by internal combustion (IC) engines to capture unused/waste heat and utilize it thereby reducing fuel consumption and emissions by improving efficiency. This information report is a survey of the waste heat recovery methods that include the use of heat exchangers.
Standard

Coolants for Internal Combustion Engines

2013-07-09
HISTORICAL
J814_201307
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D 3306 and ASTM D 4985.
Standard

Coolants for Internal Combustion Engines

2018-03-29
CURRENT
J814_201803
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D3306 and ASTM D4985.
Standard

Engine Charge Air Cooler (CAC) Nomenclature

1976-06-01
HISTORICAL
J1148_197606
This SAE Recommended Practice is intended to outline basic nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air operating and performance parameters. An engine charge air cooler is a heat exchanger used to cool the charge air of an internal combustion engine after it has been compressed by an exhaust gas driven turbocharger, an engine driven turbocharger, or a mechanically or electrically driven blower. The use of a charge air cooler allows increased engine horsepower output, and may reduce emission levels and improve fuel economy through a more complete combustion due to the increased air density available. Typical cooling media includes the engine's coolant, ambient air, or an external water or coolant source.
Standard

Engine Charge Air Cooler (CAC) Nomenclature

1984-02-01
HISTORICAL
J1148_198402
This SAE Recommended Practice is intended to outline basic nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air operating and performance parameters. An engine charge air cooler is a heat exchanger used to cool the charge air of an internal combustion engine after it has been compressed by an exhaust gas driven turbocharger, an engine driven turbocharger, or a mechanically or electrically driven blower. The use of a charge air cooler allows increased engine horsepower output, and may reduce emission levels and improve fuel economy through a more complete combustion due to the increased air density available. Typical cooling media includes the engine's coolant, ambient air, or an external water or coolant source.
Standard

Engine Charge Air Cooler (Cac) Nomenclature

1997-03-01
HISTORICAL
J1148_199703
This SAE Recommended Practice is intended to outline basic nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air operating and performance parameters. An engine charge air cooler is a heat exchanger used to cool the charge air of an internal combustion engine after it has been compressed by an exhaust gas driven turbocharger, an engine driven turbocharger, or a mechanically or electrically driven blower. The use of a charge air cooler allows increased engine horsepower output, and may reduce emission levels and improve fuel economy through a more complete combustion due to the increased air density available. Typical cooling media includes the engine's coolant, ambient air, or an external water or coolant source.
Standard

Engine Charge Air Cooler (CAC) Nomenclature

1990-06-01
HISTORICAL
J1148_199006
This SAE Recommended Practice is intended to outline basic nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air operating and performance parameters. An engine charge air cooler is a heat exchanger used to cool the charge air of an internal combustion engine after it has been compressed by an exhaust gas driven turbocharger, an engine driven turbocharger, or a mechanically or electrically driven blower. The use of a charge air cooler allows increased engine horsepower output, and may reduce emission levels and improve fuel economy through a more complete combustion due to the increased air density available. Typical cooling media includes the engine's coolant, ambient air, or an external water or coolant source.
X