Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development Status and Maintainability Features of ISS Oxygen Generation and Water Processor Assemblies

2001-07-09
2001-01-2314
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

Development Status of the ISS Oxygen Generation Assembly and Key Components

2002-07-15
2002-01-2269
Hamilton Sundstrand Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop, an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. The OGA has been under development at HSSSI for 3 years. This paper will update last year's ICES paper on the design/development of the OGA.
Technical Paper

Status of the International Space Station Regenerative ECLSS Water Recovery and Oxygen Generation Systems

2005-07-11
2005-01-2779
NASA is developing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for deployment on the International Space Station (ISS). The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), Inc., while the UPA and PSM are developed in-house by the Marshall Space Flight Center (MSFC). The assemblies have completed the manufacturing phase and are in various stages of testing and integration into the flight racks. This paper summarizes the status as of April 2005 and describes some of the technical challenges encountered and lessons learned over the past year.
Technical Paper

Status of the Node 3 Regenerative ECLSS Water Recovery and Oxygen Generation Systems

2004-07-19
2004-01-2384
NASA's Marshall Space Flight Center is providing three racks containing regenerative water recovery and oxygen generation systems (WRS and OGS) for flight on the International Space Station's (ISS) Node 3 element. The major assemblies included in these racks are the Water Processor Assembly (WPA), Urine Processor Assembly (UPA), Oxygen Generation Assembly (OGA), and the Power Supply Module (PSM) supporting the OGA. The WPA and OGA are provided by Hamilton Sundstrand Space Systems International (HSSSI), while the UPA and PSM are being designed and manufactured in-house by MSFC. The assemblies are completing the manufacturing phase and are in various stages of ORU and system level testing, to be followed by integration into the flight racks. This paper gives a current status, along with technical challenges encountered and lessons learned.
Technical Paper

Development Status and Safety Features of ISS Oxygen Generation and Water Processor Assemblies

2000-07-10
2000-01-2349
Hamilton Sundstrand Space Systems International, Inc. HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop a Water Processor Assembly (WPA) and Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The WPA produces potable quality water from humidity condensate, carbon dioxide reduction water, water obtained from fuel cells, reclaimed urine distillate, shower, handwash and oral hygiene waste waters. The Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recover System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range to support future utilization.
Technical Paper

ISS Oxygen Generation Design Status

1999-07-12
1999-01-2116
Hamilton Standard Space Systems International, Inc. (HSSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The International Space Station Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range above ambient to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. This paper describes the OGA integration into the ISS Node 3.
X