Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Data from a Variable Rate Shape High Pressure Injection System Operating in an Engine Fed Constant Volume Combustion Chamber

1990-10-01
902082
In current systems, for a given nozzle and injection pressure (pump speed), the shape of the injection rate is fixed and the injection timing is the only variable the engine designer can vary. For this non-interactive injection system, changing the injector nozzle (number and diameter of holes) will proportionately change the injection shape. New injection systems in which the rate of injection is a controlled variable are being developed. Results from one such injector, called the UCORS (Universal Combustion Optimization and Rate Shaping), are reported in this paper. The system can dynamically control its injection rate shape by controlling the position and size of a pilot injection relative to the main injection. Data and analysis from an out-of-engine and combustion chamber study of the UCORS injection system are presented.
Technical Paper

Investigation of MicroFlow Machining Effects on Diesel Injector Spray Characteristics

2004-03-08
2004-01-0026
An investigation of the effect of microflow machining on the spray characteristics of diesel injectors was undertaken. A collection of four VCO injector tips were tested prior to and after an abrasive flow process using a high viscosity media. The injector nozzles were tested on a spray fixture. Rate of injection measurements and high-speed digital images were used for the quantification of the air entrainment rate. Comparisons of the spray characteristics and A/F ratios were made for conditions of before and after the abrasive flow process. Results showed a significant decrease in the injection-to-injection variability and improvement of the spray symmetry. A link between the quantity of air entrained and potential differences in spray plume internal chemical composition and temperature is proposed via equilibrium calculations.
Technical Paper

Investigation of the Characteristics of a High Pressure Injector

1989-09-01
892101
This paper will focus on the spray characteristics of a high pressure (up to 155 MPa) accumulator type injector in a high pressure (chosen density) quiescent spray chamber. The injector uses a standard single orifice nozzle which produces a full cone spray. Using this apparatus, we are examining the fundamental aspects of high pressure spray formation under controlled conditions. Experimental data was collected using high speed photography (10,000 frames per second) which used a pulsed copper-vapor laser as a light source. Two photographic techniques are being utilized. Direct attenuation allows measurement of tip penetration, spray cone angle, and injection duration. Scattering from a sheet of laser light perpendicular to the camera field of view is being developed in an attempt to resolve inner spray cone structure. In addition to the quantitative data from the high speed photography, injector accumulator pressure, supply pressure and injection rate histories were recorded.
Technical Paper

Determination of Diesel Injector Nozzle Characteristics Using Two-Color Optical Pyrometry

2002-03-04
2002-01-0746
An investigation of several diesel injector nozzles that produced different engine emissions performance was performed. The nozzle styles used were two VCO type nozzles that were manufactured using two different techniques, and two mini-sac nozzles that provided comparison. Fired experiments were conducted on a Detroit Diesel Series 50 engine. Optical access was obtained by substituting a sapphire window for one exhaust valve. Under high speed, high load, retarded injection timing conditions, it was discovered that each nozzle produced different specific soot and NOx emissions. High-speed film images were obtained. It was discovered that the temperature and KL factor results from the 2-color optical pyrometry showed significant differences between the nozzles. The authors propose the possibility that differences in air entrainment, caused by potential differences in CD due to surface finish, may contribute to the variance in emissions performance.
X