Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Task Scheduling for Cooperative Human/Robotic Space Operations

2008-06-29
2008-01-1985
Future space missions will involve humans and robots cooperatively performing operational tasks in various team combinations. Part of the required preparation for such missions includes understanding the issues involved in task allocation between disparate agents, and efficiently ordering tasks within the mission constraints. The scheduling tool developed in this research distributes pre-allocated task primitives between a cooperative human crew and dexterous robotic team. It combines real-world precedent constraints with algorithms from scheduling theory to reorder and tighten each crew member's individual schedule. The schedules minimize astronaut involvement time by stacking astronaut-performed tasks together in the schedule. This also minimizes astronaut workload in the completion of each task. Hubble Space Telescope Servicing Mission 3A was used as an example to test the allocation and scheduling tool.
Technical Paper

The Ranger Telerobotic Shuttle Experiment: Implications for Operational EVA/Robotic Cooperation

2000-07-10
2000-01-2359
The Ranger Telerobotic Shuttle Experiment (RTSX) is a Space Shuttle-based flight experiment to demonstrate key telerobotic technologies for servicing assets in Earth orbit. The flight system will be teleoperated from onboard the Space Shuttle and from a ground control station at the NASA Johnson Space Center. The robot, along with supporting equipment and task elements, will be located in the Shuttle payload bay. A number of relevant servicing operations will be performed-including extravehicular activity (EVA) worksite setup, orbital replaceable unit (ORU) exchange, and other dexterous tasks. The program is underway toward an anticipated launch date in CY2002. This paper gives an overview of the RTSX mission, and describes several follow-on mission scenarios involving cooperative Ranger and EVA activities.
Technical Paper

Kinematic Analysis of a Robotically Augmented Pressure Suit for Planetary Exploration

2007-07-09
2007-01-3171
The next generation of pressure suits must enable large-scale planetary Extra-Vehicular Activities (EVA). Astronauts exploring the moon and Mars will be required to walk many kilometers, carry large loads, perform intricate experiments, and extract geological samples. Advanced pressure suit architectures must be developed to allow astronauts to perform these and other tasks simply and effectively. The research developed here demonstrates integration of robotics technology into pressure suit design. The concept of a robotically augmented pressure suit for planetary exploration has been developed through the use of analytical and experimental investigations. Two unique torso configurations are examined, including a Soft/Hard Upper Torso with individually adjustable bearings, as well as advances in Morphing Upper Torso research, in which an all-soft torso is analyzed as a system of interconnected parallel manipulators.
Technical Paper

Weightless Testing of a “Ratchetless” Extravehicular Activity Wrench

1999-07-12
1999-01-2036
Conventional ratcheting tools do not work efficiently in confined spaces and they have other limitations when used in space during extravehicular activity (EVA). The National Aeronautics and Space Administration’s (NASA) Goddard Space Flight Center has developed a three-dimensional (3-D) sprag/roller technology that has many benefits over the ratchet mechanism. The Space Systems Laboratory at the University of Maryland is using this technology in the development of EVA tools. The research discussed here describes the testing of an EVA roller wrench aboard NASA’s Reduced-Gravity Flying Laboratory (the KC-135), evaluation by astronauts in NASA/Johnson Space Center’s Neutral Buoyancy Laboratory, and the flight of a 3-D roller mechanism on Space Shuttle Mission STS-95.
X