Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Optimization for Driveline Parameters of Self-Dumping Truck Based on Particle Swarm Algorithm

2015-04-14
2015-01-0472
In this study, with the aim of reducing fuel consumption and improving power performance, the optimization for the driveline parameters of a self-dumping truck was performed by using a vehicle performance simulation model. The accuracy of this model was checked by the power performance and fuel economy tests. Then the transmission ratios and final drive ratio were taken as design variables. Meanwhile, the power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, maximum speed and maximum gradeability, while the combined fuel consumption of C-WTVC drive cycle was taken as an evaluation index of fuel economy. The multi-objective optimization for the power performance and fuel economy was then performed based on particle swarm optimization algorithm, and the Pareto optimal set was obtained. Furthermore, the entropy method was proposed to determine the weight of fuel consumption and acceleration time.
Technical Paper

Sound Absorption Optimization of Porous Materials Using BP Neural Network and Genetic Algorithm

2016-04-05
2016-01-0472
In recent years, the interior noise of automobile has been becoming a significant problem. In order to reduce the noise, porous materials have been widely applied in automobile manufacturing. In this study, the simulation method and optimal analysis are used to determine the optimum sound absorption of polyurethane foam. The experimental simulation is processed based on the Johnson-Allard model. In the model, the foam adheres to a hard wall. The incident wave is plane wave. The function of the model is to calculate the noise reduction coefficient of polyurethane foam with different thickness, density and porosity. The back propagation neural network coupled with genetic optimization technique is utilized to predict the optimum sound absorption. A developed back propagation neural network model is trained and tested by the simulation data.
Technical Paper

Optimization of Suspension System of Self-Dumping Truck Using TOPSIS-based Taguchi Method Coupled with Entropy Measurement

2016-04-05
2016-01-1385
This study presents a hybrid optimization approach of TOPSIS-based Taguchi method and entropy measurement for the determination of the optimal suspension parameters to achieve an enhanced compromise among ride comfort, road friendliness which means the extent of damage exerted on the road by the vehicles, and handling stabilities of a self-dumping truck. Firstly, the full multi-body dynamic vehicle model is developed using software ADAMS/Car and the vehicle model is then validated through ride comfort road tests. The performance criterion for ride comfort evaluation is identified as root mean square (RMS) value of frequency weighted acceleration of cab floor, while the road damage coefficient is used for the evaluation of the road-friendliness of a whole vehicle. The lateral acceleration and roll angle of cab were defined as evaluation indices for handling stability performance.
Technical Paper

Optimization of Vehicle Ride Comfort and Handling Stability Based on TOPSIS Method

2015-04-14
2015-01-1348
A detailed multi-body dynamic model of a passenger car was modeled using ADAMS/Car and then checked by the ride comfort and handling stability test results in this paper. The performance criterion for ride comfort evaluation was defined as the overall weighted acceleration root mean square (RMS) value of car body floor, while the roll angle and lateral acceleration of car body were considered as evaluation indicators for handling stability performance. Simultaneously, spring stiffness and shock absorber damping coefficients of the front and rear suspensions were taken as the design variables (also called factors), which were considered at three levels. On this basis, a L9 orthogonal array was employed to perform the ride and handling simulations.
Journal Article

Optimization Matching of Powertrain System for Self-Dumping Truck Based on Grey Relational Analysis

2015-04-14
2015-01-0501
In this paper, the performance simulation model of a domestic self-dumping truck was established using AVL-Cruise software. Then its accuracy was checked by the power performance and fuel economy tests which were conducted on the proving ground. The power performance of the self-dumping truck was evaluated through standing start acceleration time from 0 to 70km/h, overtaking acceleration time from 60 to 70km/h, maximum speed and maximum gradeability, while the composite fuel consumption per hundred kilometers was taken as an evaluation index of fuel economy. A L9 orthogonal array was applied to investigate the effect of three matching factors including engine, transmission and final drive, which were considered at three levels, on the power performance and fuel economy of the self-dumping truck. Furthermore, the grey relational grade was proposed to assess the multiple performance responses according to the grey relational analysis.
X