Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Response of Brake Light Filaments to Impact

1988-02-01
880234
Taillight lamp filaments provide valuable information on their illumination status during a collision. This information is contained in the shape of filament deformation, extent and nature of filament fracture, and filament oxidation. The degree of deformation of these filaments, a quantity which may be useful in determining velocities prior to impact, has been documented for headlights but has not been closely examined for taillights. In this paper, a study of the quantification of automobile taillight filament response when subjected to low speed impacts is presented. These studies include two different brands, five velocities up to approximately 19 miles per hour, three filament orientations, and two different deceleration pulses. Recommendations are given for further study in order to provide sufficient data for practical application and use in accident reconstruction.
Technical Paper

An Experimental Determination of the Strain History, Deflection Behavior, and Material Properties of a Composite material Rooftop for a Multipurpose Vehicle Part III

1989-02-01
890549
Composite material roof structures for multipurpose vehicles are comprised of a composite shell molded without metal frames as in most automobile rooftops. This paper experimentally analyzes the roof structure performance for a static uniformly distributed load over the roof surface and examines the tensile properties, effects of high temperatures and sound absorption characteristics of the random, chopped glass fiber reinforced epoxy resin material. The roof performance includes the load-strain history and the load-deflection behavior of the structure.
Technical Paper

On the Optimum Design of Composite Roof Structures

1989-02-01
890548
The roof structures of light utility vehicles are often comprised of a single composite shell without the usual steel or aluminum frames found on conventional passenger automobiles. This study analyzes the geometry of such structures in relation to their performance during rollover accident and roof intrusion. For a given set of material properties and roof impact velocity, their exists an optimum value of roof stiffness that would minimize the impact energy, manifested in a rollover accident, that would be transmitted to the occupant compartment. This work shows the effects of various geometric parameters on the amount of elastic strain energy that can be absorbed during deformation of the rooftop. The optimum roof geometry was determined to minimize the possibility of, if not the severity of, occupant injury.
Technical Paper

Pole Impact Speeds Derived from Bilinear Estimations of Maximum Crush for Body-On-Frame Constructed Vehicles

2004-03-08
2004-01-1615
Accident reconstructionists use several different approaches to determine vehicle equivalent impact speed from damage due to narrow object impacts. One method that is used relates maximum crush to equivalent impact speed with a bilinear curve. In the past, this model has been applied to several passenger cars with unibody construction. In this paper, the approach is applied to a body-on-frame vehicle. Several vehicle-to-rigid pole impact tests have been conducted on a full-size pickup at different speeds and impact locations: centrally located across the vehicle's front and outside the frame rail. A bilinear model relating vehicle equivalent impact speed to maximum crush is developed for the impact locations. These results are then compared to results obtained from other body-on-frame vehicles as well as unibody vehicles. Other tests such as impacts on the frame rail and barrier impacts are also presented. Limitations to this bilinear approach are discussed.
Technical Paper

Development of a Computer Controlled Automated Steering Controller

2005-04-11
2005-01-0394
This paper describes the design and development of the hardware, electronics, and software components of a state-of-the-art automated steering controller, the SEA, Ltd. ASC. The function of the ASC is to input to a vehicle virtually any steering profile with both high accuracy and repeatability. The ASC is designed to input profiles having steering rates and timing that are in excess of the limits of a human driver. The ASC software allows the user to specify steering profiles and select controller settings, including motor controller gains, through user-interface windows. This makes it possible for the test driver to change steering profiles and settings immediately after running any test maneuver. The motor controller used in the ASC offers self-contained signal input, output, and data storage capabilities. Thus, the ASC can operate as a standalone steering machine or it can be incorporated into typical existing, on-vehicle data acquisition systems.
Technical Paper

MADYMO Modeling of the IHRA Head-form Impactor

2005-06-14
2005-01-2740
The International Harmonization Research Activities Pedestrian Safety Working Group (IHRA PSWG) has proposed design requirements for two head-forms for vehicle hood (bonnet) impact testing. This paper discusses the development of MADYMO models representing the IHRA adult and child head-forms, validation of the models against laboratory drop tests, and assessment of the effect of IHRA geometric and mass constraints on the model response by conducting a parameter sensitivity analysis. The models consist of a multibody rigid sphere covered with a finite element modeled vinyl skin. The most important part in developing the MADYMO head-form models was to experimentally determine the material properties of the energy-absorbing portion of the head-form (vinyl skin) and incorporate these properties into MADYMO using a suitable material model. Three material models (linear isotropic, viscoelastic, hyperelastic) were examined.
Journal Article

The Design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for Military Vehicles

2013-04-08
2013-01-0696
This paper describes the mechanical design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for wheeled military vehicles. This is a facility used to measure quasi-static suspension and steering system properties as well as tire vertical static stiffness. The machine operates by holding the vehicle body nominally fixed while hydraulic cylinders move an “axle frame” in bounce or roll under each axle being tested. The axle frame holds wheel pads (representing the ground plane) for each wheel. Specific design considerations are presented on the wheel pads and the measurement system used to measure wheel center motion. The constraints on the axle frames are in the form of a simple mechanism that allows roll and bounce motion while constraining all other motions. An overview of the design is presented along with typical results.
X