Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Fuel Efficient Speed Optimization for Real-World Highway Cruising

This paper introduces an eco-driving highway cruising algorithm based on optimal control theory that is applied to a conventionally-powered connected and automated vehicle. Thanks to connectivity to the cloud and/or to infrastructure, speed limit and slope along the future route can be known with accuracy. This can in turn be used to compute the control variable trajectory that will minimize energy consumption without significantly impacting travel time. Automated driving is necessary to the implementation of this concept, because the chosen control variables (e.g., torque and gear) impact vehicle speed. An optimal control problem is built up where quadratic models are used for the powertrain. The optimization is solved by applying Pontryagin’s minimum principle, which reduces the problem to the minimization of a cost function with parameters called co-states.
Technical Paper

Impact of Advanced Technologies on Medium-Duty Trucks Fuel Efficiency

Rising fuel costs, increased regulations, and heightened customer sensitivity to energy efficiency has prompted the evaluation of numerous powertrain technology improvements to introduce into production. The actual impact of such technologies can differ broadly, depending on the technology or application. To evaluate the fuel consumption impact, various baseline vehicles have been created and simulated by using Argonne National Laboratory's vehicle modeling and simulation tool, the Powertrain Systems Analysis Toolkit (PSAT). This paper provides a quantitative evaluation of several technologies or combinations of technologies. First, we assess the impact of single technologies, including vehicle/chassis characteristics, such as weight, aerodynamics, or rolling resistance. Next, we consider advanced powertrain technologies, ranging from dieselization to transmissions with a higher gear number, and hybridization.
Technical Paper

Model Validation of the Honda Accord Plug-In

This paper presents the validation of an entire vehicle model of the Honda Accord Plug-in Hybrid Electric Vehicle (PHEV), which has a new powertrain system that can be driven in both series and parallel hybrid drive using a clutch, including thermal aspects. The Accord PHEV is a series-parallel PHEV with about 21 km of all-electric range and no multi-speed gearbox. Vehicle testing was performed at Argonne’s Advanced Powertrain Research Facility on a chassis dynamometer set in a thermal chamber. First, components (engine, battery, motors and wheels) were modeled using the test data and publicly available assumptions. This includes calibration of the thermal aspects, such as engine efficiency as a function of coolant temperature. In the second phase, the vehicle-level control strategy, especially the energy management, was analyzed in normal conditions in both charge-depleting and charge-sustaining modes.
Technical Paper

Impact of Connectivity and Automation on Vehicle Energy Use

Connectivity and automation are increasingly being developed for cars and trucks, aiming to provide better safety and better driving experience. As these technologies mature and reach higher adoption rates, they will also have an impact on the energy consumption: Connected and Automated Vehicles (CAVs) may drive more smoothly, stop less often, and move at faster speeds, thanks to overall improvements to traffic flows. These potential impacts are not well studied, and any existing studies tend to focus solely on conventional engine-powered cars, leaving aside electrified vehicles such as Hybrid Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs). This work intends to address this issue by analyzing the energy impact of various CAV scenarios on different types of electric vehicles using high-fidelity models. The vehicles-all midsize, one HEV, one BEV, and a conventional-are modeled in Autonomie, a high-fidelity, forward-looking vehicle simulation tool.
Technical Paper

Validating Heavy-Duty Vehicle Models Using a Platooning Scenario

Connectivity and automation provide the potential to use information about the environment and future driving to minimize energy consumption. Aerodynamic drag can also be reduced thanks to close-gap platooning using information from V2V communications. In order to achieve this goal, the designers of control strategy need to simulate a wide range of driving situations that be able to interact with other vehicles and the infrastructure in a close-loop fashion. RoadRunner is a new MBSE (model-based system engineering) platform based on Autonomie software, which is a collectively provide necessary tools to predict energy consumption for various driving decisions and other characteristics, such as car-following, free-flow, or eco-approach driving, and thereby can help in developing control algorithm.