Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

A Modeling Framework for Connectivity and Automation Co-simulation

This paper presents a unified modeling environment to simulate vehicle driving and powertrain operations within the context of the surrounding environment, including interactions between vehicles and between vehicles and the road. The goal of this framework is to facilitate the analysis of the energy impacts of vehicle connectivity and automation, as well as the development of eco-driving algorithms. Connectivity and automation indeed provide the potential to use information about the environment and future driving to minimize energy consumption. To achieve this goal, the designers of eco-driving control strategies need to simulate a wide range of driving situations, including the interactions with other vehicles and the infrastructure in a closed-loop fashion.
Technical Paper

Instantaneously Optimized Controller for a Multimode Hybrid Electric Vehicle

A multimode transmission combines several power-split modes and possibly several fixed gear modes, thanks to complex arrangements of planetary gearsets, clutches and electric motors. Coupled to a battery, it can be used in a highly flexible hybrid configuration, which is especially practical for larger cars. The Chevrolet Tahoe Hybrid is the first light-duty vehicle featuring such a system. This paper introduces the use of a high-level vehicle controller based on instantaneous optimization to select the most appropriate mode for minimizing fuel consumption under a broad range of vehicle operating conditions. The control uses partial optimization: the engine ON/OFF and the battery power demand regulating the battery state-of-charge are decided by a rule-based logic; the transmission mode as well as the operating points are chosen by an instantaneous optimization module that aims at minimizing the fuel consumption at each time step.
Technical Paper

Impact of Advanced Technologies on Medium-Duty Trucks Fuel Efficiency

Rising fuel costs, increased regulations, and heightened customer sensitivity to energy efficiency has prompted the evaluation of numerous powertrain technology improvements to introduce into production. The actual impact of such technologies can differ broadly, depending on the technology or application. To evaluate the fuel consumption impact, various baseline vehicles have been created and simulated by using Argonne National Laboratory's vehicle modeling and simulation tool, the Powertrain Systems Analysis Toolkit (PSAT). This paper provides a quantitative evaluation of several technologies or combinations of technologies. First, we assess the impact of single technologies, including vehicle/chassis characteristics, such as weight, aerodynamics, or rolling resistance. Next, we consider advanced powertrain technologies, ranging from dieselization to transmissions with a higher gear number, and hybridization.
Technical Paper

Modeling the Hybridization of a Class 8 Line-Haul Truck

Hybrid electric vehicles have demonstrated their ability to significantly reduce fuel consumption for several medium- and heavy-duty applications. In this paper we analyze the impact on fuel economy of the hybridization of a tractor-trailer. The study is done in PSAT (Powertrain System Analysis Toolkit), which is a modeling and simulation toolkit for light- and heavy-duty vehicles developed by Argonne National Laboratory. Two hybrid configurations are taken into account, each one of them associated with a level of hybridization. The mild-hybrid truck is based on a parallel configuration with the electric machine in a starter-alternator position; this allows start/stop engine operations, a mild level of torque assist, and a limited amount of regenerative braking. The full-hybrid truck is based on a series-parallel configuration with two electric machines: one in a starter-alternator position and another one between the clutch and the gearbox.
Technical Paper

“Fair” Comparison of Powertrain Configurations for Plug-In Hybrid Operation Using Global Optimization

Plug-in Hybrid Electric Vehicles (PHEVs) use electric energy from the grid rather than fuel energy for most short trips, therefore drastically reducing fuel consumption. Different configurations can be used for PHEVs. In this study, the parallel pre-transmission, series, and power-split configurations were compared by using global optimization. The latter allows a fair comparison among different powertrains. Each vehicle was operated optimally to ensure that the results would not be biased by non-optimally tuned or designed controllers. All vehicles were sized to have a similar all-electric range (AER), performance, and towing capacity. Several driving cycles and distances were used. The advantages of each powertrain are discussed.
Technical Paper

Model Validation of the Honda Accord Plug-In

This paper presents the validation of an entire vehicle model of the Honda Accord Plug-in Hybrid Electric Vehicle (PHEV), which has a new powertrain system that can be driven in both series and parallel hybrid drive using a clutch, including thermal aspects. The Accord PHEV is a series-parallel PHEV with about 21 km of all-electric range and no multi-speed gearbox. Vehicle testing was performed at Argonne’s Advanced Powertrain Research Facility on a chassis dynamometer set in a thermal chamber. First, components (engine, battery, motors and wheels) were modeled using the test data and publicly available assumptions. This includes calibration of the thermal aspects, such as engine efficiency as a function of coolant temperature. In the second phase, the vehicle-level control strategy, especially the energy management, was analyzed in normal conditions in both charge-depleting and charge-sustaining modes.
Technical Paper

Impact of Connectivity and Automation on Vehicle Energy Use

Connectivity and automation are increasingly being developed for cars and trucks, aiming to provide better safety and better driving experience. As these technologies mature and reach higher adoption rates, they will also have an impact on the energy consumption: Connected and Automated Vehicles (CAVs) may drive more smoothly, stop less often, and move at faster speeds, thanks to overall improvements to traffic flows. These potential impacts are not well studied, and any existing studies tend to focus solely on conventional engine-powered cars, leaving aside electrified vehicles such as Hybrid Electric Vehicles (HEVs) and Battery Electric Vehicles (BEVs). This work intends to address this issue by analyzing the energy impact of various CAV scenarios on different types of electric vehicles using high-fidelity models. The vehicles-all midsize, one HEV, one BEV, and a conventional-are modeled in Autonomie, a high-fidelity, forward-looking vehicle simulation tool.
Technical Paper

Plug-in Hybrid Electric Vehicle Control Strategy: Comparison between EV and Charge-Depleting Options

The U.S. Department of Energy (DOE) has invested considerable research and development (R&D) effort into Plug-in Hybrid Electric Vehicle (PHEV) technology because of the potential fuel displacement offered by the technology. DOE's PHEV R&D Plan [1], which is driven by the desire to reduce dependence on foreign oil by diversifying the fuel sources of automobiles, describes the various activities required to achieve the goals. The U.S. DOE will use Argonne's Powertrain Systems Analysis Toolkit (PSAT) to guide its analysis activities, stating, “Argonne's Powertrain Systems Analysis Toolkit (PSAT) will be used to design and evaluate a series of PHEVs with various ‘primary electric’ ranges, considering all-electric and charge-depleting strategies.” PSAT was used to simulate three possible charge-depleting (CD) PHEV control strategies for a power split hybrid. Trip distance was factored into the CD strategies before the cycle was started.
Technical Paper

Validating Heavy-Duty Vehicle Models Using a Platooning Scenario

Connectivity and automation provide the potential to use information about the environment and future driving to minimize energy consumption. Aerodynamic drag can also be reduced by close-gap platooning using information from vehicle-to-vehicle communications. In order to achieve these goals, the designers of control strategies need to simulate a wide range of driving situations in which vehicles interact with other vehicles and the infrastructure in a closed-loop fashion. RoadRunner is a new model-based system engineering platform based on Autonomie software, which can collectively provide the necessary tools to predict energy consumption for various driving decisions and scenarios such as car-following, free-flow, or eco-approach driving, and thereby can help in developing control algorithms.