Refine Your Search

Topic

Search Results

Standard

Design Considerations for Hush House Facilities

2018-11-26
WIP
AIR9969
to provide industry with a reference document highlighting the necessary design considerations and configuration option for an aircraft fully enclosed test facility (Hush House).
Standard

Test Facility Shakedown and Commissioning

2017-11-29
CURRENT
AIR6364
The paper discusses in general terms the activities required to be undertaken or demonstrated during the establishment of the facility such as: the assessment checks prior to forwarding to the end users site for embodiment into the facility system the establishment of the facility such as trial installations of hardware, functionality checking of lifting transportation and access systems, centerline pull checks, pressure testing of fuel and air start systems, flushing of wet systems and electrical continuity checking. the commissioning of the facility such as instrumentation calibrations, engine starts, engine running, assessment of command and control system, assessment of DAS system, aerodynamic and acoustic surveys. The paper will concentrate on the main engineering engine related aspects of the facility and will not necessarily contain information on the construction validation activities such as HVAC, electrical, facility fire system, waste water etc.
Standard

Design, Calibration, and Test Methods for Turbine Engine Icing Test Facilities

2017-09-15
CURRENT
AIR6189
This SAE Aerospace Information Report (AIR) provides descriptions of test procedures and established practices for the application, use, and administration of the conduct of icing testing for all types of turbine engines in conventional supercooled liquid (14 CFR Part 25 Appendix C) environmental conditions in ground test facilities (sea-level and altitude) for icing certification purposes.
Standard

Modeling Techniques for Jet Engine Test Cell Aerodynamics

2009-06-16
HISTORICAL
AIR4827A
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
Standard

Physical Modeling Techniques for Jet Engine Test Cell Aerodynamics

2016-10-21
CURRENT
AIR4827B
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
Standard

Modeling Techniques for Jet Engine Test Cell Aerodynamics

1999-05-01
HISTORICAL
AIR4827
This SAE Aerospace Information Report (AIR) has been written for individuals associated with ground level testing of turbofan and turbojet engines and particularly for those who might be interested in investigating the performance characteristics of a new test cell design or of proposed modifications to an existing test cell by means of a scale model test.
Standard

Design Considerations for Enclosed Turbofan/Turbojet Engine Test Cells

2009-05-13
CURRENT
AIR4869A
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities.
Standard

DESIGN CONSIDERATIONS FOR ENCLOSED TURBOFAN/TURBOJET ENGINE TEST CELLS

1995-10-01
HISTORICAL
AIR4869
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of large and small gas turbine engines and particularly for those who might be interested in upgrading their existing or acquiring new test cell facilities.
Standard

Test Cell Thrust Measurement

2011-06-29
CURRENT
AIR4951
Thrust measurement systems come in many sizes and shapes, with varying degrees of complexity, accuracy and cost . For the purposes of this information report, the discussions of thrust measurement will be limited to axial thrust in single-axis test systems.
Standard

Test Cell Analytical Thrust Correction

2018-11-04
WIP
AIR5436A
This document describes a method to correct engine thrust, measured in an indoor test cell, for the aerodynamic effects caused by the secondary airflow induced in the test cell by the engine operating in an enclosed environment in close proximity to an exhaust duct. While it is not recommended to be used to replace test cell correlation, it does provide a means to verify an existing thrust correlation factor.
Standard

Test Cell Analytical Thrust Correction

2012-11-08
CURRENT
AIR5436
This document describes a method to correct engine thrust, measured in an indoor test cell, for the aerodynamic effects caused by the secondary airflow induced in the test cell by the engine operating in an enclosed environment in close proximity to an exhaust duct. While it is not recommended to be used to replace test cell correlation, it does provide a means to verify an existing thrust correlation factor.
Standard

Installed Outdoor Engine Testing

2000-04-01
HISTORICAL
AIR5301
This SAE Aerospace Information Report (AIR) was written because of the growing interest in aircraft installed outdoor engine testing by the Federal Aviation Administration, airlines, charter/commercial operators, cargo carriers, engine manufacturers and overhaul and repair stations. This document was developed by a broad cross section of personnel from the aviation industry and government agencies and includes information obtained from a survey of a variety of operators of fixed and rotary wing aircraft and research of aircraft and engine maintenance manuals.
Standard

Design Considerations for Enclosed Turboprop Engine Test Cells

2013-10-11
CURRENT
AIR5295A
This document is offered to provide state-of-the-art information about design factors that must be considered in the design of new or significantly modified engine test cells used to test propeller equipped turboprop engines in either QEC or bare engine configurations. The report does not address design considerations for test cells designed to test turboprop engines with dynamometer type load absorption devices because they are essentially tested as turboshaft engines. Design considerations for those test cells are presented in AIR4989, Reference 2.1.
Standard

Installed Outdoor Engine Testing

2017-11-29
CURRENT
AIR5301A
This SAE Aerospace Information Report (AIR) was written because of the growing interest in aircraft installed outdoor engine testing by the Federal Aviation Administration, airlines, charter/commercial operators, cargo carriers, engine manufacturers and overhaul and repair stations. This document was developed by a broad cross section of personnel from the aviation industry and government agencies and includes information obtained from a survey of a variety of operators of fixed and rotary wing aircraft and research of aircraft and engine maintenance manuals.
Standard

Design Considerations for Enclosed Turboprop Engine Test Cells

1998-10-01
HISTORICAL
AIR5295
This document is offered to provide state-of-the-art information about design factors that must be considered in the design of new or significantly modified engine test cells used to test propeller equipped turboprop engines in either QEC or bare engine configurations. The report does not address design considerations for test cells designed to test turboprop engines with dynamometer type load absorption devices because they are essentially tested as turboshaft engines. Design considerations for those test cells are presented in AIR4989, Reference 2.1.
Standard

Inlet Airflow Ramps for Gas Turbine Engine Test Cells

2013-12-10
CURRENT
AIR5306A
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of gas turbine engines and particularly for those who might be interested in upgrading their existing engine test facility to meet the airflow requirements for higher thrust engine models. The intellectual property rights on the material contained in this document are protected by US Patent Number 5,293,775 dated March 15, 1994 assigned to United Technologies Corporation, Hartford, Connecticut, USA. Any individual, or organization, attempting to use the system described in this document should get a clearance from United Technologies Corporation, to avoid any potential liability arising from patent infringement.
Standard

Infrasound Phenomenon in Engine Test Cells

2010-02-01
CURRENT
AIR5303
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground level testing of large turbofan and turbojet engines, and particularly those who are interested in infrasound phenomena.
Standard

Inlet Airflow Ramps for Gas Turbine Engine Test Cells

2000-07-01
HISTORICAL
AIR5306
This SAE Aerospace Information Report (AIR) has been written for individuals associated with the ground-level testing of gas turbine engines and particularly for those who might be interested in upgrading their existing engine test facility to meet the airflow requirements for higher thrust engine models. The intellectual property rights on the material contained in this document are protected by US Patent Number 5,293,775 dated March 15, 1994 assigned to United Technologies Corporation, Hartford, Connecticut, USA. Any individual, or organization, attempting to use the system described in this document should get a clearance from United Technologies Corporation, to avoid any potential liability arising from patent infringement.
X