Refine Your Search

Topic

Search Results

Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2011-06-17
HISTORICAL
J1752/3_201106
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2017-09-22
CURRENT
J1752/3_201709
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Measurement of Radiated Emissions from Integrated Circuits -- TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2003-01-21
HISTORICAL
J1752/3_200301
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2011-06-24
HISTORICAL
J1752/2_201106
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Electromagnetic Compatibility Measurement Procedures for Integrated Circuits-Integrated Circuit Emc Measurement Procedures-General and Definition

1997-03-01
HISTORICAL
J1752/1_199703
This SAE Recommended Practice provides supporting information for the emission and immunity measurement procedures defined in SAE J1752. The near field magnetic of electromagnetic radiation from an integrated circuit can be measured in a controlled manner that yields repeatable results. These emissions are related to the far field electromagnetic radiation potential of the IC and of the electronic module of which it is a part. The intent is to provide a quantitative measure of the RF emissions from ICs for comparison or other purposes. Similar quantitative measures of the immunity of an IC to RF fields and transients are being investigated.
Standard

Performance Levels and Methods of Measurement of Electromagnetic Radiation From Vehicles and Devices, Narrowband, 10 Khz to 1000 Mhz

1987-10-01
CURRENT
J1816_198710
With the advent of computer based electronics being utilized in automobiles, the Electromagnetic Radiation Subcommittee has deemed it prudent that a new test method be written to provide a common test for the measurement of narrowband radiation from vehicles and devices. This SAE Standard covers methods of measuring incidental narrowband radiation from vehicles and devices. The standard also establishes performance levels intended to protect nearby communication and broadcast receivers. It is intended to serve as an alternate method of measuring electromagnetic radiation which is analogous to the FCC Part 15 methodology but adapted to measuring vehicles. The equivalent procedures for broadband emissions are set forth in SAE J551. This standard covers narrowband emissions in the frequency range of 10 kHz to 1000 MHz. An example of such radiation is the unintended emission from on-board logic and computer modules.
Standard

Electrostatic Discharge Test for Vehicles

1995-07-01
CURRENT
J1595_199507
This SAE Information Report defines the test methods and specifications for electrostatic discharge sensitivity of passenger cars, multipurpose passenger vehicles, trucks and buses.
Standard

Electrostatic Discharge Test for Vehicles

1988-10-01
HISTORICAL
J1595_198810
This SAE Information Report defines the test methods and specifications for electrostatic discharge sensitivity of passenger cars, multipurpose passenger vehicles, trucks and buses.
Standard

Conducted Immunity, 250 Khz to 5000 Mhz, Direct Injection of Radio Frequency (Rf) Power

1995-11-01
HISTORICAL
J1113/3_199511
This part of SAE J1113 specifies the direct RF power injection test method and procedure to testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous, narrowband conducted RF energy. This test method is applicable to all DUT leads except ground. The test provides differential mode excitation to the DUT. Immunity measurements of complete vehicles are generally only possible by the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes or the large number of different vehicle models. Therefore, for research, development, and quality control, a laboratory measuring method for components shall be applied by the manufacturer. This method is suitable over the frequency range of 250 kHz to 500 MHz.
Standard

Conducted Immunity, 250 kHz to 400 MHz, Direct Injection of Radio Frequency (RF) Power

2006-09-19
HISTORICAL
J1113/3_200609
This part of SAE J1113 specifies the direct RF power injection test method and procedure for testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous, narrowband conducted RF energy. This test method is applicable to all DUT leads except the RF reference ground. The test provides differential mode excitation to the DUT. Immunity measurements of complete vehicles are generally only possible by the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes or the large number of different vehicle models. Therefore, for research, development, and quality control, a laboratory measuring method for components shall be applied by the manufacturer. This method is suitable over the frequency range of 250 kHz to 400 MHz.
Standard

Conducted Immunity, 250 kHz to 400 MHz, Direct Injection of Radio Frequency (RF) Power

2010-08-05
CURRENT
J1113/3_201008
This part of SAE J1113 specifies the direct RF power injection test method and procedure for testing electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbances considered in this part of SAE J1113 are limited to continuous, narrowband conducted RF energy. This test method is applicable to all DUT leads except the RF reference ground. The test provides differential mode excitation to the DUT. Immunity measurements of complete vehicles are generally only possible by the vehicle manufacturer. The reasons, for example, are high costs of a large absorber-lined chamber, preserving the secrecy of prototypes or the large number of different vehicle models. Therefore, for research, development, and quality control, a laboratory measuring method for components shall be applied by the manufacturer. This method is suitable over the frequency range of 250 kHz to 400 MHz.
Standard

Limits and Methods of Measurement of Radio Disturbance Characteristics of Components and Modules for the Protection of Receivers Used On-Board Vehicles

2000-05-02
HISTORICAL
J1113/41_200005
This SAE Standard contains limits and procedures for the measurement of radio disturbances in the frequency range of 150 kHz to 1000 MHz. The standard applies to any electronic/electrical component intended for use in vehicles and large devices. Refer to International Telecommunications Union (ITU) Publications for details of frequency allocations. The limits are intended to provide protection for receivers installed in a vehicle from disturbances produced by components/modules in the same vehicle. The receiver types to be protected are: sound and television receivers, land mobile radio, radio telephone, amateur and citizens radio. For the purpose of this document, a vehicle is a machine which is self-propelled. Vehicles include (but are not limited to) passenger cars, trucks, agricultural tractors, and snowmobiles. The limits in this document are recommended and subject to modification as agreed between the vehicle manufacturer and the component supplier.
Standard

Limits and Methods of Measurement of Radio Disturbance Characteristics of Components and Modules for the Protection of Receivers Used On Board Vehicles

2006-09-29
CURRENT
J1113/41_200609
This SAE Standard contains limits1 and procedures for the measurement of radio disturbances in the frequency range of 150 kHz to 1000 MHz. The standard applies to any electronic/electrical component intended for use in vehicles and large devices. Refer to International Telecommunications Union (ITU) Publications for details of frequency allocations. The limits are intended to provide protection for receivers installed in a vehicle from disturbances produced by components/modules in the same vehicle.2 The receiver types to be protected are: sound and television receivers3, land mobile radio, radio telephone, amateur and citizens' radio. For the purpose of this document, a vehicle is a machine which is self-propelled. Vehicles include (but are not limited to) passenger cars, trucks, agricultural tractors, and snowmobiles. The limits in this document are recommended and subject to modification as agreed between the vehicle manufacturer and the component supplier.
Standard

Electromagnetic Compatibility--Component Test Procedure--Part 42--Conducted Transient Emissions

2000-09-27
HISTORICAL
J1113/42_200009
This SAE Standard defines a component-level test procedure to evaluate automotive electrical and electronic components for Conducted Emissions of transients, and for other electromagnetic disturbances, along battery feed (B+) or switched ignition inputs of a Device Under Test (DUT). Test apparatus specifications outlined in this procedure were developed for components installed in the 12-V passenger cars, light trucks, 12 V heavy-duty trucks, and vehicles with 24 V systems
Standard

Electromagnetic Compatibility--Component Test Procedure--Part 42--Conducted Transient Emissions

2006-10-11
HISTORICAL
J1113/42_200610
This SAE Standard defines a component-level test procedure to evaluate automotive electrical and electronic components for Conducted Emissions of transients, and for other electromagnetic disturbances, along battery feed (B+) or switched ignition inputs of a Device Under Test (DUT). Test apparatus specifications outlined in this procedure were developed for components installed in the 12-V passenger cars, light trucks, 12 V heavy-duty trucks, and vehicles with 24 V systems
X