Refine Your Search

Topic

Search Results

Standard

Electrostatic Discharge Test for Vehicles

1995-07-01
CURRENT
J1595_199507
This SAE Information Report defines the test methods and specifications for electrostatic discharge sensitivity of passenger cars, multipurpose passenger vehicles, trucks and buses.
Standard

Measurement of Radiated Emissions from Integrated Circuits -- Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2003-01-21
HISTORICAL
J1752/2_200301
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2011-06-24
HISTORICAL
J1752/2_201106
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2016-09-16
CURRENT
J1752/2_201609
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Vehicle Electromagnetic Radiated Susceptibility Testing Using a LargeTEM Cell

1995-07-01
CURRENT
J1407_199507
This information report gives the procedures for use and operation of a large transverse electromagnetic (TEM) mode cell for the determination of electromagnetic (EM) radiated susceptibility of equipment, subystems and systems (whose dimensions are less than 3 m x 6 m x 18 m) in the frequency range 10 kHz - 20 MHz. Several large TEM cells have been designed and constructed by various organizations for EMP and high power CW testing. Two cell designs and associated instrumentation are included for example purposes in this report. Other cell configurations have also been constructed. Users should consult the literature before undertaking a project of this magnitude for other cell and instrumentation designs.
Standard

Vehicle Electromagnetic Radiated Susceptibility Testing Using a LargeTEM Cell

1982-08-01
HISTORICAL
J1407_198208
This information report gives the procedures for use and operation of a large transverse electromagnetic (TEM) mode cell for the determination of electromagnetic (EM) radiated susceptibility of equipment, subystems and systems (whose dimensions are less than 3 m x 6 m x 18 m) in the frequency range 10 kHz - 20 MHz. Several large TEM cells have been designed and constructed by various organizations for EMP and high power CW testing. Two cell designs and associated instrumentation are included for example purposes in this report. Other cell configurations have also been constructed. Users should consult the literature before undertaking a project of this magnitude for other cell and instrumentation designs.
Standard

Anechoic Test Facility Radiated Susceptibility 20 MHz to 18 GHz Electromagnetic Field

1995-07-01
CURRENT
J1507_199507
This information report gives typical requirements for an anechoic chamber in which the system susceptibility of an operating motor vehicle to electromagnetic fields can be determined in the frequency range of 20 MHz to 18 GHz. Because of the large cone sizes required for 20 MHz cut-off, several anechoic facilities have been designed with lower cut-off frequencies of 200 MHz or greater. Testing below cut-off is then accomplished using customized antennas at reduced accuracy. Users should carefully review their testing requirements before undertaking the construction of a test facility the magnitude of an anechoic chamber. Other test approaches include, but are not limited to, open field testing per SAE J1338 and mode stirred reverberation chambers.
Standard

Anechoic Test Facility Radiated Susceptibility 20 Mhz - 18 Ghz Electromagnetic Field

1987-01-01
HISTORICAL
J1507_198701
This information report gives typical requirements for an anechoic chamber in which the system susceptibility of an operating motor vehicle to electromagnetic fields can be determined in the frequency range of 20 MHz to 18 GHz. Because of the large cone sizes required for 20 MHz cut-off, several anechoic facilities have been designed with lower cut-off frequencies of 200 MHz or greater. Testing below cut-off is then accomplished using customized antennas at reduced accuracy. Users should carefully review their testing requirements before undertaking the construction of a test facility the magnitude of an anechoic chamber. Other test approaches include, but are not limited to, open field testing per SAE J1338 and mode stirred reverberation chambers.
Standard

Characterization, Conducted Immunity

2018-06-12
CURRENT
J2628_201806
The methods included in this document are: a Voltage-Temperature Design Margins. b Voltage Interruptions and Transients. c Voltage Dropouts and Dips. d Current Draw Under a Number of Conditions. e Switch Input Noise These methods are best applied during the Development stage but can be used at all stages (e.g., Pre-Qualification, Qualification or Conformity).
Standard

Characterization, Conducted Immunity

2013-07-16
HISTORICAL
J2628_201307
The methods included in this document are: a Voltage-Temperature Design Margins. b Voltage Interruptions and Transients. c Voltage Dropouts and Dips. d Current Draw Under a Number of Conditions. e Switch Input Noise These methods are best applied during the Development stage but can be used at all stages (e.g., Pre-Qualification, Qualification or Conformity).
Standard

Characterization, Conducted Immunity

2007-07-19
HISTORICAL
J2628_200707
This document establishes methods for characterizing the robustness of vehicle electronic modules to certain electrical and temperature environmental stresses using methods designed to address the deficiencies inherent in other commonly used validation methods.
Standard

Characterization--Conducted Immunity

2005-04-29
HISTORICAL
J2628_200504
This document establishes a method for characterizing the design margins and compatibility of electronic devices and equipment used in vehicles to various voltage fluctuations and transients over temperature.
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2012-05-11
HISTORICAL
J551/16_201205
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2017-10-10
CURRENT
J551/16_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Vehicle Electromagnetic Immunity - Power Line Magnetic Fields

2015-07-22
CURRENT
J551/17_201507
This SAE Standard specifies the test methods and procedures for testing passenger cars and commercial vehicles to magnetic fields generated by power transmission lines and generating stations. SAE J551-1 specifies general information, definitions, practical use, and basic principles of the test procedure.
Standard

Vehicle Electromagnetic Immunity—Power Line Magnetic Fields

2010-01-07
HISTORICAL
J551/17_201001
This SAE Standard specifies the test methods and procedures for testing passenger cars and commercial vehicles to magnetic fields generated by power transmission lines and generating stations. SAE J551-1 specifies general information, definitions, practical use, and basic principles of the test procedure.
Standard

Vehicle Electromagnetic Immunity--Bulk Current Injection

1994-03-21
HISTORICAL
J551/13_199403
This part of SAE J551 specifies Bulk Current Injection (BCI) test methods and procedures for testing the electromagnetic immunity of electronic components for passenger cars and commercial vehicles. The electromagnetic disturbance, considered in this part of SAE J551, will be limited to continuous narrow band electromagnetic fields. SAE J551/1 specifies general, definitions, practical use, and basic principles of the test procedure.
X