Refine Your Search

Search Results

Viewing 1 to 7 of 7
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2011-06-24
HISTORICAL
J1752/2_201106
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2016-09-16
CURRENT
J1752/2_201609
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Characterization, Conducted Immunity

2013-07-16
HISTORICAL
J2628_201307
The methods included in this document are: a Voltage-Temperature Design Margins. b Voltage Interruptions and Transients. c Voltage Dropouts and Dips. d Current Draw Under a Number of Conditions. e Switch Input Noise These methods are best applied during the Development stage but can be used at all stages (e.g., Pre-Qualification, Qualification or Conformity).
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2011-06-17
HISTORICAL
J1752/3_201106
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2017-09-22
CURRENT
J1752/3_201709
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Electrical Interference by Conduction and Coupling—Capacitive and Inductive Coupling via Lines Other than Supply Lines

2006-08-30
HISTORICAL
J1113/12_200608
This SAE Standard establishes a common basis for the evaluation of devices and equipment in vehicles against transient transmission by coupling via lines other than the power supply lines. The test demonstrates the immunity of the instrument, device, or equipment to coupled fast transient disturbances, such as those caused by switching of inductive loads, relay contact bouncing, etc. Four test methods are presented – Capacitive Coupling Clamp, Chattering Relay, Direct Capacitor Coupling, and Inductive Coupling Clamp.
X