Refine Your Search

Search Results

Viewing 1 to 18 of 18
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2011-06-24
HISTORICAL
J1752/2_201106
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2016-09-16
CURRENT
J1752/2_201609
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
Standard

Vehicle Electromagnetic Immunity - Power Line Magnetic Fields

2003-05-28
HISTORICAL
J551/17_200305
This SAE Standard specifies the test methods and procedures for testing passenger cars and commercial vehicles to magnetic fields generated by power transmission lines and generating stations. SAE J551-1 specifies general, definitions, practical use, and basic principles of the test procedure.
Standard

Vehicle Electromagnetic Immunity - Power Line Magnetic Fields

2015-07-22
CURRENT
J551/17_201507
This SAE Standard specifies the test methods and procedures for testing passenger cars and commercial vehicles to magnetic fields generated by power transmission lines and generating stations. SAE J551-1 specifies general information, definitions, practical use, and basic principles of the test procedure.
Standard

Vehicle Electromagnetic Immunity—Power Line Magnetic Fields

2010-01-07
HISTORICAL
J551/17_201001
This SAE Standard specifies the test methods and procedures for testing passenger cars and commercial vehicles to magnetic fields generated by power transmission lines and generating stations. SAE J551-1 specifies general information, definitions, practical use, and basic principles of the test procedure.
Standard

Performance Levels and Methods of Measurement of Magnetic and Electric Field Strength from Electric Vehicles, 150 kHz to 30 MHz

2017-11-07
CURRENT
J551/5_201711
This SAE Recommended Practice specifies measurement procedures and performance levels for magnetic and electric field emissions and conducted power mains emissions over the frequency range 150 kHz to 30 MHz, for vehicles incorporating electric propulsion systems, e.g., battery, hybrid, or plug-in hybrid electric vehicles. Conducted emission measurements in this document are applicable only to battery-charging systems which utilize a switching frequency above 9 kHz, are mounted on the vehicle, and whose power is transferred by metallic conductors. Conducted emission requirements apply only during charging of the batteries from AC power lines. Conducted and radiated emissions measurements of battery-charging systems that use an induction power coupling device are not covered by this document. The measurement of electromagnetic disturbances for frequencies from 30 MHz to 1000 MHz is covered in CISPR 12.
Standard

Performance Levels and Methods of Measurement of Magnetic and Electric Field Strength from Electric Vehicles, Broadband, 9 kHz to 30 MHz

1997-12-01
HISTORICAL
J551/5_199712
The test procedures and performance levels in this SAE Recommended Practice cover the measurement of magnetic and electric field strengths over the frequency range 9 kHz to 30 MHz and conducted emissions over the frequency range of 450 kHz to 30 MHz. Conducted emission measurements in this document are applicable only to battery-charging systems which utilize a switching frequency above 9 kHz, are mounted on the vehicle, and whose power is transferred by metallic conductors. Conducted emission requirements apply only during charging of the batteries from AC power lines. Conducted and radiated emissions measurements of battery-charging systems that use an induction power coupling device are not covered by this document. The measurement of electromagnetic disturbances for frequencies from 30 MHz to 1000 MHz and narrowband electromagnetic disturbances for frequencies from 150 kHz to 30 MHz are covered in SAE J551-2.
Standard

Performance Levels and Methods of Measurement of Magnetic and Electric Field Strength From Electric Vehicles, Broadband, 9 Khz to 30 Mhz

1995-06-01
HISTORICAL
J551/5_199506
The test procedures and performance levels in this SAE recommended Practice cover the measurement of magnetic and electric field strengths over the frequency range 9 kHz to 30 MHz and conducted emissions over the frequency range of 450 kHz to 30 MHz. Conducted emission measurements in this document are applicable only to battery-charging systems which utilize a switching frequency above 9 kHz, are mounted on the vehicle, and whose power is transferred by metallic conductors. Conducted emission requirements apply only during charging of the batteries from AC power lines. Conducted and radiated emissions measurements of battery-charging systems that use an induction power coupling device are not covered by this document. The measurement of electromagnetic disturbances for frequencies from 30 MHz to 1000 MHz and narrowband electromagnetic disturbances for frequencies from 150 kHz to 30 MHz are covered in SAE J551/2.
Standard

Performance Levels and Methods of Measurement of Magnetic and Electric Field Strength from Electric Vehicles, Broadband,9 kHz To 30 MHz

2004-01-22
HISTORICAL
J551/5_200401
The test procedures and performance levels in this SAE Recommended Practice cover the measurement of magnetic and electric field strengths over the frequency range 9 kHz to 30 MHz and conducted emissions over the frequency range of 450 kHz to 30 MHz . Conducted emission measurements in this document are applicable only to battery-charging systems which utilize a switching frequency above 9 KHz, are mounted on the vehicle, and whose power is transferred by metallic conductors. Conducted emission requirements apply only during charging of the batteries from AC power lines. Conducted and radiated emissions measurements of battery-charging systems that use an induction power coupling device are not covered by this document. The measurement of electromagnetic disturbances for frequencies from 30 MHz to 1000 MHz and narrowband electromagnetic disturbances for frequencies from 150 KHz to 30 MHz are covered in SAE J551-2.
Standard

Vehicle Electromagnetic Immunity—Electrostatic Discharge (ESD)

2009-06-29
HISTORICAL
J551/15_200906
This SAE Standard specifies the ESD test methods and procedures necessary to evaluate electronic modules intended for vehicle use. It describes test procedures for evaluating electronic modules in complete vehicles. A procedure for verifying the simulator that is used to generate the electrostatic discharges is given in Appendix A. Functional status classifications for immunity to ESD are given in Appendix B.
Standard

Vehicle Electromagnetic Immunity - Electrostatic Discharge (ESD)

2015-09-17
HISTORICAL
J551/15_201509
This SAE Standard specifies the ESD test methods and procedures necessary to evaluate electronic modules intended for vehicle use. It describes test procedures for evaluating electronic modules in complete vehicles. A procedure for verifying the simulator that is used to generate the electrostatic discharges is given in Appendix A. Functional status classifications for immunity to ESD are given in Appendix B.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2017-09-22
CURRENT
J1752/3_201709
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
Standard

Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method; TEM Cell (150 kHz to 1 GHz), Wideband TEM Cell (150 kHz to 8 GHz)

2011-06-17
HISTORICAL
J1752/3_201106
This measurement procedure defines a method for measuring the electromagnetic radiation from an integrated circuit (IC). The IC being evaluated is mounted on an IC test printed circuit board (PCB) that is clamped to a mating port (referred to as a wall port) cut in the top or bottom of a TEM or wideband TEM (GTEM) cell. The test board is not in the cell as in the conventional usage but becomes a part of the cell wall. This method is applicable to any TEM or GTEM cell modified to incorporate the wall port; however, the measured RF voltage is affected by the septum to test board (wall) spacing. This procedure was developed using a 1 GHz TEM cell with a septum to wall spacing of 45 mm and a GTEM cell with average septum to wall spacing of 45 mm over the port area. Other cells may not produce identical spectral output but may be used for comparative measurements, subject to their frequency and sensitivity limitations.
X