Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

In-Cylinder Pressure Measurements Using the Spark Plug as an Ionization Sensor

1997-02-24
970857
A model based on an ionization equilibrium analysis, that can relate the ion current to the state of the gas inside the combustion volume, has been presented earlier. This paper introduces several additional models, that together with the previous model have the purpose of improving the pressure predictions. One of the models is a chemistry model that enables us to realistically consider the current contribution from the most relevant species. A second model can predict the crank angle of the peak pressure and thereby substantially increase the accuracy of the pressure predictions. Several other additions and improvements have been introduced, including support for part load engine conditions.
Technical Paper

Local Air-Fuel Ratio Measurements Using the Spark Plug as an Ionization Sensor

1997-02-24
970856
The influence of variable air-fuel ratio inside a spark ignition engine is examined by the use of an ionization sensor. The measured ion currents are used for predicting the local air-fuel ratio in the vicinity of the spark plug. In order to support the results, a theoretical analysis has been made. An instationary chemical kinetic model burning a mixture of iso-octane and n-heptane is used for the calculations. The results are used to reconstruct the crank angle resolved ion current that has been measured in an engine. This technique has been developed in order to offer a supplementary low-cost facility of controlling the air-fuel ratio within the combustion chamber of an engine.
Technical Paper

Supercharged Homogeneous Charge Compression Ignition

1998-02-23
980787
The Homogeneous Charge Compression Ignition (HCCI) is the third alternative for combustion in the reciprocating engine. Here, a homogeneous charge is used as in a spark ignited engine, but the charge is compressed to auto-ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine, HCCI has a homogeneous charge and hence no problems associated with soot and NOX formation. Earlier research on HCCI showed high efficiency and very low amounts of NOX, but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP values with HCCI, the limit being 5 bar. Supercharging is one way to dramatically increase IMEP. The influence of supercharging on HCCI was therefore experimentally investigated. Three different fuels were used during the experiments: iso-octane, ethanol and natural gas.
Technical Paper

Knock in Spark-Ignition Engines: End-Gas Temperature Measurements Using Rotational CARS and Detailed Kinetic Calculations of the Autoignition Process

1997-05-01
971669
Cycle-resolved end-gas temperatures were measured using dual-broadband rotational CARS in a single-cylinder spark-ignition engine. Simultaneous cylinder pressure measurements were used as an indicator for knock and as input data to numerical calculations. The chemical processes in the end-gas have been analysed with a detailed kinetic mechanism for mixtures of iso-octane and n-heptane at different Research Octane Numbers (RON'S). The end-gas is modelled as a homogeneous reactor that is compressed or expanded by the piston movement and the flame propagation in the cylinder. The calculated temperatures are in agreement with the temperatures evaluated from CARS measurements. It is found that calculations with different RON'S of the fuel lead to different levels of radical concentrations in the end-gas. The apperance of the first stage of the autoignition process is marginally influenced by the RON, while the ignition delay of the second stage is increased with increasing RON.
Technical Paper

Investigation of End-Gas Temperature and Pressure Increases in Gasoline Engines and Relevance for Knock Occurrence

1997-05-01
971671
A detailed analysis of the end-gas temperature and pressure in gasoline engines has been performed. This analysis leads to a simplified zero-dimensional model, that considers both, the compression and the expansion of the end-gas by the piston movement, and the compression by the flame front. If autoignition occurs in the end-gas the sudden rise of the pressure and the heat release is calculated. The rate form of the first law of thermodynamics for a control volume combined with the mass conservation equation for an unsteady and a uniform-flow process are applied. The heat of formation in the end-gas due to the chemical activity has been taken into account. In addition, a chemical kinetic model has been applied in order to study the occurrence of autoignition and prediction of knock.
Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

Adaptive Polynomial Tabulation (APT): A computationally economical strategy for the HCCI engine simulation of complex fuels

2010-04-12
2010-01-1085
The solution mapping method Adaptive Polynomial Tabulation (APT) for complex chemistry is presented. The method has the potential of reducing the computational time required for stochastic reactor model simulations of the HCCI combustion process. In this method the solution of the initial value chemical rate equation system is approximated in real-time with zero, first and second order polynomial expressions. These polynomials are algebraic functions of a progress variable, pressure and total enthalpy. The chemical composition space is divided a priori into block-shaped regions (hypercubes) of the same size. Each hypercube may be divided in real-time into adaptive hypercubes of different sizes. During computations, initial conditions are stored in the adaptive hypercubes. Two concentric Ellipsoids of Accuracy (EOA) are drawn around each stored initial condition.
Technical Paper

Detailed Chemistry CFD Engine Combustion Solution with Ignition Progress Variable Library Approach

2009-06-15
2009-01-1898
This paper explains the principle and advantages of the Ignition Progress Variable Library (IPV-Library) approach and its use in predicting engine related premixed, non-premixed and compression ignited combustion events. The implementation of IPV-Library model in the engine-focused CFD code VECTIS is described. To demonstrate the application of the model in predicting various types of combustion, computational results from a 2-stroke HCCI engine, a premixed spark ignition engine and an HSDI diesel engine are presented, together with some comparisons with engine test data.
Technical Paper

Modeling and Investigation of Exothermic Centers in HCCI Combustion

2009-04-20
2009-01-0131
The formation of exothermic centers was modeled with a Stochastic Reactor Model (SRM) to investigate their impact on HCCI combustion. By varying the exhaust valve temperature, and thus assigning more realistic wall temperatures, the formation of exothermic centers and the ignition timing was shifted in time. To be able to study the exothermic centers, their formation and their distribution, Scatter plots, standard deviation plots and Probability Density Function (PDF) plots were constructed on the basis of the data the SRM calculations provided. The standard deviation for the particle temperatures was found to be an useful indicator of the degree of homogeneity within the combustion chamber, and thus of how efficient the combustion process was. It was observed that when the standard deviation of the temperature was higher, the emissions of CO and of hydrocarbons present at the end of the closed cycle were higher.
Technical Paper

Diesel Engine Cycle Simulation with a Reduced Set of Modeling Parameters Based on Detailed Kinetics

2009-04-20
2009-01-0676
An investigation on reducing the set of modeling parameters for engine cycle simulation is presented. The investigation considers a detailed kinetic model for combustion and emissions predictions coupled to a complete cycle simulation tool applied to a modern Diesel engine. The analysis is based on a previously developed method that combines a 1-D gas dynamics model with a stochastic reactor model for direct injection engines (SRM-DI). Initially, the global and instantaneous performance parameters of a Diesel engine were simulated at different operating conditions. The model was validated and the simulated results were compared to experimental data to assess the quality of the model. Afterwards, the influence of the chosen modeling parameters on engine performance, such as in-cylinder pressure, emissions and global performances, were analyzed. The mixing time proved to be the most important modeling parameter for the stochastic reactor model.
Technical Paper

Studying HCCI Combustion and its Cyclic Variations Versus Heat Transfer, Mixing and Discretization using a PDF Based Approach

2009-04-20
2009-01-0667
The ability to predict cyclic variations is certainly useful in studying engine operating regimes, especially under unstable operating conditions where one single cycle may differ from another substantially and a single simulation may give rather misleading results. PDF based models such as Stochastic Reactor Models (SRM) are able to model cyclic variations, but these may be overpredicted if discretization is too coarse. The range of cyclic variations and the dependence of the ability to correctly assess their mean values on the number of cycles simulated were investigated. In most cases, the average values were assessed correctly on the basis of as few as 10 cycles, but assessing the complete range of cyclic variations could require a greater number of cycles. In studying average values, variations due too coarse discretization being employed are smaller than variations originating from changes in physical parameters, such as heat transfer and mixing parameters.
Technical Paper

A PDF-Based Model for Full Cycle Simulation of Direct Injected Engines

2008-06-23
2008-01-1606
In one-dimensional engine simulation programs the simulation of engine performance is mostly done by parameter fitting in order to match simulations with experimental data. The extensive fitting procedure is especially needed for emissions formation - CO, HC, NO, soot - simulations. An alternative to this approach is, to calculate the emissions based on detailed kinetic models. This however demands that the in-cylinder combustion-flow interaction can be modeled accurately, and that the CPU time needed for the model is still acceptable. PDF based stochastic reactor models offer one possible solution. They usually introduce only one (time dependent) parameter - the mixing time - to model the influence of flow on the chemistry. They offer the prediction of the heat release, together with all emission formation, if the optimum mixing time is given.
Technical Paper

Efficient 3-D CFD Combustion Modeling with Transient Flamelet Models

2008-04-14
2008-01-0957
A transient interactive flamelet model and a transient flamelet library based model are used to model a medium-duty diesel fueled engine operating in PCCI mode. The simulations are performed with and without the source term accounting for evaporation in the mixture fraction variance equation. Reasonable agreement is found with the experiments with both models. The effect of the evaporation source term in the mixture fraction variance equation is different for the different transient flamelet approaches. For the transient interactive flamelet model the ignition onset is delayed as a consequence of the higher mixture fraction variance, which leads to a higher scalar dissipation rate. The evaporation source term does not affect the global characteristics of the ignition event for the transient flamelet progress variable model, but locally the initial combustion is occurring differently.
Technical Paper

Self-Calibrating Model for Diesel Engine Simulations

2012-04-16
2012-01-1072
A self-calibrating model for Diesel engine simulations is presented. The overall model consists of a zero-dimensional direct injection stochastic reactor model (DI-SRM) for engine in-cylinder processes simulations and a package of optimization algorithms (OPAL) suitable for solving various optimization, automatization and search problems. In the DI-SRM, based on an extensive model parameters study, the mixing time history that affects the level of in-cylinder turbulence was selected as a main calibration parameter. As targets during calibration against the experimental data, in-cylinder pressure history and engine-out emissions, including nitrogen oxides and unburned hydrocarbons were chosen. The calibration task was solved using DI-SRM and OPAL working as an integrated tool. Within OPAL, genetic algorithms (GA) were used to determine model constants necessary for calibrating. Engine-out emissions in DI-SRM were calculated based on the reduced mechanism of n-heptane.
Technical Paper

A Fast Tool for Predictive IC Engine In-Cylinder Modelling with Detailed Chemistry

2012-04-16
2012-01-1074
This paper reports on a fast predictive combustion tool employing detailed chemistry. The model is a stochastic reactor based, discretised probability density function model, without spatial resolution. Employing detailed chemistry has the potential of predicting emissions, but generally results in very high CPU costs. Here it is shown that CPU times of a couple of minutes per cycle can be reached when applying detailed chemistry, and CPU times below 10 seconds per cycle can be reached when using reduced chemistry while still catching in-cylinder in-homogeneities. This makes the tool usable for efficient engine performance mapping and optimisation. To meet CPU time requirements, automatically load balancing parallelisation was included in the model. This allowed for an almost linear CPU speed-up with number of cores available.
Technical Paper

Diesel-PPC engine: Predictive Full Cycle Modeling with Reduced and Detailed Chemistry

2011-08-30
2011-01-1781
Partially Premixed Combustion (PPC) engines have demonstrated a potential for high efficiency and low emissions operation. To be able to study the combustion in detail but also to perform parametric studies on the potential of the PPC concept a one dimensional (1D) engine simulation tool was used with 1; a prescribed burn rate 2; predictive combustion tool with reduced chemical model and 3; predictive combustion tool with detailed chemical models. Results indicate that fast executing reduced chemistry work reasonably well in predicting PPC performance and that n-decane is possibly a suitable diesel substitute in PPC modeling while n-heptane is not.
Technical Paper

On the Performance of Biodiesel Blends - Experimental Data and Simulations Using a Stochastic Fuel Test Bench

2014-04-01
2014-01-1115
In this work are presented experimental and simulated data from a one-cylinder direct injected Diesel engine fuelled with Diesel, two different biodiesel blends and pure biodiesel at one engine operating point. The modeling approach focuses on testing and rating biodiesel surrogate fuel blends by means of combustion and emission behavior. Detailed kinetic mechanisms are adopted to evaluate the fuel-blends performances under both reactor and diesel engine conditions. In the first part of the paper, the experimental engine setup is presented. Thereafter the choice of the surrogate fuel blends, consisting of n-decane, α-methyl-naphtalene and methyl-decanoate, are verified by the help of experiments from the literature. The direct injection stochastic reactor model (DI-SRM) is employed to simulate combustion and engine exhaust emissions (NOx, HC, CO and CO2), which are compared to the experimental data.
Technical Paper

Combustion Modeling of Diesel Sprays

2016-04-05
2016-01-0592
Several models for ignition, combustion and emission formation under diesel engine conditions for multi-dimensional computational fluid dynamics have been proposed in the past. It has been recognized that the use of a reasonably detailed chemistry model improves the combustion and emission prediction especially under low temperature and high exhaust gas recirculation conditions. The coupling of the combustion chemistry and the turbulent flow can be achieved with different assumptions. In this paper we investigate a selection of n-heptane spray experiments published by the Engine Combustion Network (ECN spray H) with three different combustion models: well-stirred reactor model, transient interactive flamelet model and progress variable based conditional moment closure. All models cater for the use of detailed chemistry, while the turbulence-chemistry interaction modeling and the ability to consider local effects differ.
Technical Paper

Development of Methodology for Predictive Diesel Combustion Simulation Using 0D Stochastic Reactor Model

2016-04-05
2016-01-0566
Stringent exhaust emission limits and new vehicle test cycles require sophisticated operating strategies for future diesel engines. Therefore, a methodology for predictive combustion simulation, focused on multiple injection operating points is proposed in this paper. The model is designated for engine performance map simulations, to improve prediction of NOx, CO and HC emissions. The combustion process is calculated using a zero dimensional direct injection stochastic reactor model based on a probability density function approach. Further, the formation of exhaust emissions is described using a detailed reaction mechanism for n-heptane, which involves 56 Species and 206 reactions. The model includes the interaction between turbulence and chemistry effects by using a variable mixing time profile. Thus, one is able to capture the effects of mixture inhomogeneities on NOx, CO and HC emission formation.
Technical Paper

Potential Levels of Soot, NOx, HC and CO for Methanol Combustion

2016-04-05
2016-01-0887
Methanol is today considered a viable green fuel for combustion engines because of its low soot emissions and the possibility of it being produced in a CO2-neutral manner. Methanol as a fuel for combustion engines have attracted interest throughout history and much research was conducted during the oil crisis in the seventies. In the beginning of the eighties the oil prices began to decrease and interest in methanol declined. This paper presents the emission potential of methanol. T-Φ maps were constructed using a 0-D reactor with constant pressure, temperature and equivalence ratio to show the emission characteristics of methanol. These maps were compared with equivalent maps for diesel fuel. The maps were then complemented with engine simulations using a stochastic reactor model (SRM), which predicts end-gas emissions. The SRM was validated using experimental results from a truck engine running in Partially Premixed Combustion (PPC) mode at medium loads.
X