Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Use of Fuel by Spark Ignition Engines

Fuel consumption per revolution is approximately a linear function of work output per revolution, for power levels less than about two-thirds of the power at wide-open throttle. Thus where N is engine speed, Pf is fuel energy rate (kW), and Pb is power output (kW). The approximation is relatively good for engine speeds typical of regulatory driving cycles. The parameters α and b are studied using engine measurements conducted in the late 1970s. The parameter values are rather uniform, with averages α = 0.29V, where a is in kJ/rev and V is displacement in liters, and b = 2.45 (dimonsionless). Engine maps for more modern engines show, that the parameter a has declined. Several applications are discussed: especially simulation of vehicle fuel use, and creation of a figure of merit for fuel use by engines.
Technical Paper

Assessing and Modeling Direct Hydrogen and Gasoline Reforming Fuel Cell Vehicles and Their Cold-Start Performance

This paper analyzes fuel economy benefits of direct hydrogen and gasoline reformer fuel cell vehicles, with special focus on cold-start impacts on these fuel cell based vehicles. Comparing several existing influential studies reveals that the most probable estimates from these studies differ greatly on the implied benefits of both types of fuel cell vehicles at the tank-to-wheel level (vehicle-powertrain efficiency and/or specific power), leading to great uncertainties in estimating well-to-wheel fuel energy and/or greenhouse gas (GHG) emission reduction potentials. This paper first addresses methodological issues to influence the outcome of these analyses. With one exception, we find that these studies consistently ignore cold-start and warm-up issues, which play important roles in determining both energy penalties and start-up time of fuel cell vehicles. To better understand cold-start and warm-up behavior, this paper examines approaches and results based on two available U.S.
Technical Paper

Assessing the Fuel Economy Potential of Light-Duty Vehicles

This paper assesses the potential for car and light truck fuel economy improvements by 2010-15. We examine a range of refinements to body systems and powertrain, reflecting current best practice as well as emerging technologies such as advanced engine and transmission, lightweight materials, integrated starter-generators, and hybrid drive. Engine options are restricted to those already known to meet upcoming California emissions standards. Our approach is to apply a state-of-art vehicle system simulation model to assess vehicle fuel economy gains and performance levels. We select a set of baseline vehicles representing five major classes - Small and Standard Cars, Pickup Trucks, SUVs and Minivans - and analyze design changes likely to be commercially viable within the coming decade. Results vary by vehicle type.
Technical Paper

Integration of a Modal Energy and Emissions Model into a PNGV Vehicle Simulation Model, PSAT

This paper describes the integration of a Modal Energy and Emissions Model (MEEM) into a hybrid-electric vehicle simulation model, the PNGV System Analytic Toolkits (PSAT). PSAT is a forward-looking computer simulation model for advanced-technology vehicles. MEEM is a vehicle fuel-consumption and emissions model developed by one of the authors for internal-combustion-engine (ICE) -powered vehicles. MEEM engine simulation module uses a power-demand physical model based on a parameterized analytical representation of engine fuel and emissions production. One major advantage of MEEM is that it does not rely on steady-state engine maps, which are usually not available for most production vehicles; rather, it depends on a list of engine parameters that are calibrated based on regular vehicle dynamometer testing. The integrated PSAT-MEEM model can be used effectively to predict fuel consumption and emissions of various ICE-powered vehicles with both conventional and hybrid power trains.