Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Experimental and Numerical Evaluation of Diesel Spray Momentum Flux

2009-11-02
2009-01-2772
In the present work, an experimental and numerical analysis of high pressure Diesel spray evolution is carried out in terms of spray momentum flux time history and instantaneous injection rate. The final goal of spray momentum and of injection rate analyses is the evaluation of the nozzle outlet flow characteristics and of the nozzle internal geometry possible influences on cavitation phenomena, which are of primary importance for the spray evolution. Further, the evaluation of the flow characteristics at the nozzle exit is fundamental in order to obtain reliable boundary conditions for injection process 3D simulation. In this paper, spray momentum data obtained in ambient temperature, high counter-pressure conditions at the Perugia University Spray Laboratory are presented and compared with the results of 3D simulations of the momentum rig itself.
Technical Paper

Steady and Transient Fluid Dynamic Analysis of the Tumble and Swirl Evolution on a 4V Engine with Independent Intake Valves Actuation

2008-10-06
2008-01-2392
This work aims at analyzing the fluid dynamic characteristics of a Ducati 4 valves SI engine, for racing motorcycle, during the intake and compression strokes, focusing on the correlation between steady state flow test data (experiments and simulations) and transient CFD simulation results, including the effect of variable valve actuation strategies with independent intake valve actuation. Several steady state flow test data were available in terms of maps of the discharge, tumble and swirl coefficients, at any combination of asymmetric lifts of the two intake valves. From these steady state data it can be argued that asymmetric strategies could enhance engine full load and part load operation characteristics, by exploiting favourable trade off occurring between the opposing needs for high mass flow rate and high charge motion intensity.
Technical Paper

Performance and Emissions of a Common Rail DI Diesel Engine Using Fossil and Different Bio-Derived Fuels

2001-05-07
2001-01-2017
The recent introduction of electronic controlled, high pressure injection systems has deeply changed the scenario for light duty, automotive diesel engines. This change is mainly due to the enhanced flexibility in obtaining the desired injection law (time history and injected fuel quantity), while high injection pressures also favour a suitable mixture formation. This results in higher engine performance (efficiency and power) and in better pollutant emissions control. At the same time, in order to reduce the greenhouse gases net production, research is analyzing alternative resources, such as bio-derived fuels. In particular, methyl esters derived by different vegetable oils are characterized by high cetane numbers and very small sulfur content. The present work reports the results of a comparative analysis performed on a modern DI, common-rail, turbocharged engine by using three different bio-derived fuels (rape seed, soybean, waste cooked oil) and conventional fossil diesel fuel.
Technical Paper

Coupled Simulation of Nozzle Flow and Spray Formation Using Diesel and Biodiesel for CI Engine Applications

2012-04-16
2012-01-1267
A two-step simulation methodology was applied for the computation of the injector nozzle internal flow and the spray evolution in diesel engine-like conditions. In the first step, the multiphase cavitating flow inside injector nozzle is calculated by means of unsteady CFD simulation on moving grids from needle opening to closure. A non-homogeneous Eulerian multi-fluid approach - with three phases i.e. liquid, vapor and air - has been applied. Afterward, in the second step, transient data of spatial distributions of velocity, turbulent kinetic energy, dissipation rate, void fraction and many other relevant properties at the nozzle exit were extracted and used for the subsequent Lagrangian spray calculation. A primary break-up model, which makes use of the transferred data, is used to initialize droplet properties within the hole area.
Technical Paper

Analysis of the Structural Behavior of Racing Motorcycle Swingarms

2012-04-16
2012-01-0207
The problems which arise during the design of a motorcycle, may affect the proper functioning of the vehicle, and ride comfort. This type of problem is particularly found in sport where mechanical components which can cause malfunctioning should, be replaced quickly within a very limited time. This work is an investigation of the swingarm component. The aim is to link objective data such as stiffness and natural frequencies (derived through the application of scientific method) with subjective information such as handling and comfort perceived by professional riders. The testers were two riders of the 2008 World SuperBike Championship. They were chosen to represent two kinds of driving behaviors: one of them had a affable riding attitude, whereas, the second was more aggressive. Three motorcycle swingarms used in the 2008 World SuperBike Championship, were mechanically characterized: FEM and experimental investigations were performed.
X