Refine Your Search

Search Results

Viewing 1 to 7 of 7
Standard

Test Procedure to Measure Permeation of Elastomeric Hose or Tube by Weight Loss

2019-04-01
CURRENT
J2663_201904
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid.
Standard

Test Procedure to Measure Permeation of Elastomeric Hose or Tube by Weight Loss

2010-06-16
HISTORICAL
J2663_201006
This test method is intended for measuring fuel permeation at elevated temperature through low permeating hose or tubing samples of elastomeric or composite construction. The expected accuracy of the method is about ±10% of the sample permeation rate. Hose permeation testing can be done two ways: Method A – Plug and Fill or Method B – using a fuel reservoir. Method A involves plugging one end of the hose, filling the sample to about 90% full with test fuel, plugging the other end, and then exposing the plugged sample to a desired test temperature, with the weight loss measured over time. Method B involves plugging one end of a hose, and then connecting the other end to a fuel reservoir. The hose sample and reservoir are then exposed to a desired test temperature with the weight loss measured over time. This procedure presents a recommended plug design that permits inserting the plugs prior to adding the test fluid.
Standard

Quick Connect Coupling Specification for Liquid Fuel and Vapor/Emissions Systems

2011-01-25
WIP
J2044
This SAE Recommended Practice defines the minimum functional requirements for quick connect couplings used for supply, return, and vapor/emission fuel system connections. This document also defines standard male tube end form dimensions, so as to guarantee interchangeability between all connector designs of the same male tube end form size. This document applies to automotive and light truck applications under the following conditions: a. Gasoline and diesel fuel delivery systems or their vapor venting or evaporative emission control systems; b. Operating pressure up to 500 kPa, 5 bar, (72 psig); c. Operating vacuum down to -50 kPa, -0.5 bar (-7.2 psi); d. Operating temperatures from -40 °C (-40 °F) to 115 °C (239 °F). Quick connect couplings function by joining the connector to a mating tube end form, then pulling back to assure a complete connection. The requirements stated in this document apply to new connectors in assembly operations unless otherwise indicated.
Standard

Test Procedure to Determine the Hydrocarbon Losses From Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies By Recirculation

1997-08-01
HISTORICAL
J1737_199708
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls as well as through 'microleaks' at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which liquids which are transported through walls and joints are collected by a controlled flow of nitrogen (dry) and adsorbed by activated charcoal.
Standard

Test Procedure to Determine the Hydrocarbon Losses from Fuel Tubes, Hoses, Fittings, and Fuel Line Assemblies by Recirculation

2004-11-17
HISTORICAL
J1737_200411
This SAE Recommended Practice is intended for the determination of the losses of hydrocarbon fluids, by permeation through component walls as well as through 'microleaks' at interfaces of assembled components while controlling temperature and pressure independently of each other. This is achieved in a recirculating system in which liquids which are transported through walls and joints are collected by a controlled flow of nitrogen (dry) and adsorbed by activated charcoal.
Standard

Nonmetallic Fuel System Tubing

1994-05-01
HISTORICAL
J2043_199405
This SAE Standard covers the minimum requirements for nonmetallic tubing as manufactured for use in gasoline or diesel fuel systems. It is not intended to cover tubing for any portion of the system which operates below -40 degrees C, above 115 degrees C, or above a maximum working gage pressure of 690 kPa.
Standard

Performance Requirements for Fuel System Tubing Assemblies

2017-12-01
WIP
J2045
This SAE Standard encompasses the recommended minimum requirements for non-metallic tubing and/or combinations of metallic tubing to non-metallic tubing assemblies manufactured as liquid- and/or vapor-carrying systems designed for use in gasoline, alcohol blends with gasoline, or diesel fuel systems. This SAE Standard is intended to cover tubing assemblies for any portion of a fuel system which operates above –40 °C (–40 °F) and below 115 °C (239 °F), and up to a maximum working gage pressure of 690 kPa (100 psig). The peak intermittent temperature is 115 °C (239 °F). For long-term continuous usage, the temperature shall not exceed 90 °C (194 °F). It should be noted that temperature extremes can affect assemblies in various manners and every effort must be made to determine the operating temperature to which a specific fuel line assembly will be exposed, and design accordingly.
X