Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Calculation of the Piston Assembly Friction: Classification, Validation and Interpretation

2012-04-16
2012-01-1323
This SAE Technical Paper contains detailed data which are relevant for the calculation of the friction forces of the piston assembly in internal combustion engines. Useful ways of employing calculations besides measurements are exactly classified for the optimization of the piston assembly system in order to reduce friction losses. In the first step the theoretical basics for the calculation of the tribological system are introduced. Referring to the theory, the paper goes into detail about the basic set-up and the modeling degree of the calculation program. Furthermore, measured and calculated curves of friction forces are compared for different operating points. In addition, analysis of the crank-angle resolved friction force are presented with varying engine speeds, oil temperatures and loads and a detailed interpretation of the results is given.
Technical Paper

Development of a Model-Based HCCI Control Strategy for an Engine with a Fully Variable Valve Train

2013-04-08
2013-01-1667
This paper discusses research activities at the Technische Universität München on the HCCI combustion process, focusing on the development of a model-based control concept with pressure indication. As a first step sensitivity analyses have been carried out to investigate influences of different injection strategies on the combustion and emission characteristics. An optimal injection strategy has been determined and reasonable control variables and ranges corresponding to this strategy were defined. Comprehensive steady-state measurements have been conducted to detect the engine characteristics. In order to limit the experimental effort, principles of DoE (Design of Experiments) have been used to define a methodological approach in the planning of the measurements. Afterwards a multiple-input multiple-output engine model including boundary models for input settings has been designed out of the measurement results.
Technical Paper

Extensive Investigation of a Common Rail Diesel Injector Regarding Injection Characteristics and the Resulting Influences on the Dual Fuel Pilot Injection Combustion Process

2016-04-05
2016-01-0780
Natural gas and especially biogas combustion can be seen as one of the key technologies towards climate-neutral energy supply. With its extensive availability, biogas is amongst the most important renewable energy sources in the present energy mix. Today, the use of gaseous fuels is widely established, for example in cogeneration units for combined heat and power generation. In contrast to conventional spark plug ignition, the combustion can also be initialized by a pilot injection. In order to further increase engine efficiency, this article describes the process for a targeted optimization of the pilot fuel injection. One of the crucial points for a more efficient dual fuel combustion process, is to optimize the amount of pilot injection in order to increase overall engine efficiency, and therefore decrease fuel consumption. In this connection, the injection system plays a key role.
Technical Paper

An Efficient Test Methodology for Combustion Engine Testing: Methods for Increasing Measurement Quality and Validity at the Engine Test Bench

2017-03-28
2017-01-0604
Improving fuel efficiency while meeting relevant emission limits set by emissions legislation is among the main objectives of engine development. Simultaneously the development costs and development time have to be steadily reduced. For these reasons, the high demands in terms of quality and validity of measurements at the engine test bench are continuously rising. This paper will present a new methodology for efficient testing of an industrial combustion engine in order to improve the process of decision making for combustion-relevant component setups. The methodology includes various modules for increasing measurement quality and validity. Modules like stationary point detection to determine steady state engine behavior, signal quality checks to monitor the signal quality of chosen measurement signals and plausibility checks to evaluate physical relations between several measurement signals ensure a high measurement quality over all measurements.
Journal Article

Optimal Injection Strategies to Compensate for Injector Aging in Common Rail Fuel Systems

2018-04-03
2018-01-1160
Aging effects such as coking or erosive damage that occur in fuel injection nozzles are known to deteriorate the engine performance. This article proposes an optimization method to compensate for injector aging and to control the combustion behavior over engine lifetime by adapting the injection strategy. First, a control-oriented combustion model is presented, which takes the condition of the injection nozzle into account. In combination with a simulation model of the entire fuel injection system from a previous study, the model is capable of predicting the heat release rate (HRR) at different working conditions. Measurements with a single-cylinder diesel engine were performed, using injectors with modified and aged nozzles, to validate the proposed combustion model and particularly to analyze the influence of injector aging. Using the simulation model, optimal injection strategies were obtained by applying a line search optimization scheme to recover a reference HRR trajectory.
Technical Paper

Simulative Evaluation of Various Thermodynamic Cycles and the Specification of Their System Components Regarding the Optimization of a Cogeneration Unit

2018-09-05
2018-01-5034
Given the increasing globalization and industrialization, the worldwide demand for energy continuously increases. In the context of modern Smart Grids, especially small and distributed power plants are a key factor. The present article essentially focuses on the investigation of different approaches for waste heat recovery (WHR) in small-scale CHP (combined heat and power) applications with an output range of approximately 20 kW. The engine integrated into the CHP system under investigation applies a lean-burn combustion process generally providing comparatively low exhaust gas temperatures, thus requiring a careful design that is crucial for efficient WHR. Therefore, this article presents the development and use of a simulation environment for the design and optimization of WHR in small-scale CHP applications.
X