Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Fuel Consumption Optimization and Noise Reduction in a Spark-Ignition Turbocharged VVA Engine

2013-04-08
2013-01-1625
Modern VVA systems offer new potentialities in improving the fuel consumption for spark-ignition engines at low and medium load, meanwhile they grant a higher volumetric efficiency and performance at high load. Recently introduced systems enhance this concept through the possibility of concurrently modifying the intake valve opening, closing and lift leading to the development of almost "throttle-less" engines. However, at very low loads, the control of the air-flow motion and the turbulence intensity inside the cylinder may require to select a proper combination of the butterfly throttling and the intake valve control, to get the highest BSFC (Brake Specific Fuel Consumption) reduction. Moreover, a low throttling, while improving the fuel consumption, may also produce an increased gas-dynamic noise at the intake mouth. In highly "downsized" engines, the intake valve control is also linked to the turbocharger operating point, which may be changed by acting on the waste-gate valve.
Journal Article

Analysis of Knock Tendency in a Small VVA Turbocharged Engine Based on Integrated 1D-3D Simulations and Auto-Regressive Technique

2014-04-01
2014-01-1065
In the present paper, two different methodologies are adopted and critically integrated to analyze the knock behavior of a last generation small size spark ignition (SI) turbocharged VVA engine. Particularly, two full load operating points are selected, exhibiting relevant differences in terms of knock proximity. On one side, a knock investigation is carried out by means of an Auto-Regressive technique (AR model) to process experimental in-cylinder pressure signals. This mathematical procedure is used to estimate the statistical distribution of knocking cycles and provide a validation of the following 1D-3D knock investigations. On the other side, an integrated numerical approach is set up, based on the synergic use of 1D and 3D simulation tools. The 1D engine model is developed within the commercial software GT-Power™. It is used to provide time-varying boundary conditions (BCs) for the 3D code, Star-CD™.
Journal Article

Advanced Numerical/Experimental Methods for the Analysis of a Waste-Gated Turbocharger Turbine

2014-04-01
2014-01-1079
In the paper the results of an experimental campaign regarding the steady characterization of a turbocharger waste-gated turbine (IHI-RHF3) for gasoline engine application are presented. The turbine behavior is analyzed in a specialized test rig operating at the University of Genoa, under different openings of the waste-gate valve. The test facility allows to measure inlet and outlet static pressures, mass flow rate and turbocharger rotational speed. The above data constitute the basis for the tuning and validation of a numerical procedure, recently developed at the University of Naples, following a 1D approach (1D turbine model - 1DTM). The model geometrically schematizes the entire turbine based on few linear and angular dimensions directly measured on the hardware. The 1D steady flow equations are then solved within the stationary and rotating channels constituting the device. All the main flow losses are properly taken into account in the model.
Journal Article

UV-visible Optical Characterization of the Early Combustion Stage in a DISI Engine Fuelled with Butanol-Gasoline Blend

2013-10-14
2013-01-2638
Detailed experimental information on the early stages of spark ignition process represent a substantial part for guiding the development of engines with higher efficiencies and reduced pollutant emissions. Flame kernel formation influences strongly combustion development inside the cylinder, especially for a direct injection spark ignition engine. This study presents the analysis of the evolution of spark-ignited flame kernels with detailed view upon cycle-to-cycle variations. Experiments are performed in a SI optical engine equipped with the cylinder head and injection system of a commercial turbocharged engine. Blend of commercial gasoline and butanol (40% by volume) is tested at stoichiometric and lean mixture conditions. Experiments are carried out at 2000 rpm through conventional tests (based on in-cylinder pressure measurements and exhaust emission analysis) and through optical diagnostics. In particular, UV-visible digital imaging and natural emission spectroscopy are applied.
Journal Article

Advanced Numerical and Experimental Techniques for the Extension of a Turbine Mapping

2013-09-08
2013-24-0119
1D codes are nowadays commonly used to investigate a turbocharged ICE performance, turbo-matching and transient response. The turbocharger is usually described in terms of experimentally derived characteristic maps. The latter are commonly measured using the compressor as a brake for the turbine, under steady “hot gas” tests. This approach causes some drawbacks: each iso-speed is commonly limited to a narrow pressure ratio and mass flow rate range, while a wider operating domain is experienced on the engine; the turbine thermal conditions realized on the test rig may strongly differ from the coupled-to-engine operation; a “conventional” net turbine efficiency is really measured, since it includes the effects of the heat exchange on the compressor side, together with bearing friction and windage losses.
Journal Article

A Comparison Between External and Internal Resonators Employment to Reduce the Gas-Dynamic Noise of a SI Engine

2014-10-13
2014-01-2864
This paper reports 1D and 3D CFD analyses aiming to improve the gas-dynamic noise emission of a downsized turbocharged VVA engine through the re-design of the intake air-box device, consisting in the introduction of external or internal resonators. Nowadays, modern spark-ignition (SI) engines show more and more complex architectures that, while improving the brake specific fuel consumption (BSFC), may be responsible for the increased noise radiation at the engine intake mouth. In particular VVA systems allow for the actuation of advanced valve strategies that provide a reduction in the BSFC at part load operations thanks to the intake line de-throttling. In these conditions, due to a less effective attenuation of the pressure waves that travel along the intake system, VVA engines produce higher gas-dynamic noise levels.
Technical Paper

Potentials of the Oversizing and H2-Supported Lean Combustion of a VVA SI Gasoline Engine Towards Efficiency Improvement

2021-09-05
2021-24-0007
In recent years, internal combustion engine (ICE) downsizing coupled with turbocharging was considered the most effective path to improve engine efficiency at low load, without penalizing rated power/torque performance at full load. On the other side, issues related to knocking combustion and excessive exhaust gas temperatures obliged adopting countermeasures that highly affect the efficiency, such as fuel enrichment and delayed combustion. Powertrain electrification allows operating the ICE mostly at medium/high loads, shifting design needs and constraints towards targeting high efficiency under those operating conditions. Conversely, engine efficiency at low loads becomes a less important issue. In this track, the aim of this work is the investigation of the potential of the oversizing of a small Variable Valve ActuationSpark Ignition gasoline engine towards efficiency increase and tailpipe emission reduction.
Journal Article

Experimental Investigation and 1D Simulation of a Turbocharger Compressor Close to Surge Operation

2015-04-14
2015-01-1720
Downsizing is widely considered one of the main path to reduce the fuel consumption of spark ignition internal combustion engines. As known, despite the reduced size, the required torque and power targets can be attained thanks to an adequate boost level provided by a turbocharger. However, some drawbacks usually arise when the engine operates at full load and low speeds. In fact, in the above conditions, the boost pressure and the engine performance is limited since the compressor experiences close-to-surge operation. This occurrence is even greater in case of extremely downsized engines with a reduced number of cylinders and a small intake circuit volume, where the compressor works under strongly unsteady flow conditions and its instantaneous operating point most likely overcomes the steady surge margin. In the paper, both experimental and numerical approaches are followed to describe the unsteady behavior of a small in-series turbocharger compressor.
Journal Article

Butanol-Diesel Blend Spray Combustion Investigation by UV-Visible Flame Emission in a Prototype Single Cylinder Compression Ignition Engine

2015-09-06
2015-24-2435
The paper reports the results of an experimental investigation carried out in a prototype optically accessible compression ignition engine fuelled with different blends of commercial diesel and n-butanol. Thermodynamic analysis and exhaust gas measurements were supported by optical investigations performed through a wide optical access to the combustion chamber. UV-visible digital imaging and 2D chemiluminescence were applied to characterize the combustion process in terms of spatial and temporal occurrence of auto-ignition, flame propagation, soot and OH evolution. The paper illustrates the results of the spray combustion for diesel and n-butanol-diesel blends at 20% and 40% volume fraction, exploring a single and double injection strategy (pilot+main) from a common rail multi-jet injection system. Tests were performed setting a pilot+main strategy with a fixed dwell time and different starts of injection.
Journal Article

Knock and Cycle by Cycle Analysis of a High Performance V12 Spark Ignition Engine. Part 2: 1D Combustion and Knock Modeling

2015-09-06
2015-24-2393
The results of the experimental analyses, described in Part 1, are here employed to build up an innovative numerical approach for the 1D modeling of combustion, cycle-by-cycle variations and knock of a high performance 12-cylinder spark-ignition engine. The whole engine is schematized in detail in a 1D framework simulation, developed in the GT-Power™ environment. Proper “in-house developed” sub-models are used to describe the combustion process, turbulence phenomenon, cycle-by-cycle variations (CCV) and knock occurrence. In particular, the knock onset is evaluated by a chemical kinetic scheme for a toluene reference fuel, able to detect the presence of auto-ignition reactions in the end-gas zone. In a first stage, the engine model is validated in terms of overall performance parameter and ensemble averaged pressure cycles, for various full and part load operating points and spark timings.
Journal Article

Experimental Evaluation of an Advanced Ignition System for GDI Engines

2015-09-06
2015-24-2520
A plasma ignition system was tested in a GDI engine with the target of combustion efficiency improvement without modifying engine configuration. The plasma was generated by spark discharge and successively sustained to enhance its duration up to 4 ms. The innovative ignition system was tested in an optically accessible single-cylinder DISI engine to investigate the effects of plasma on kernel stability and flame front propagation under low loads and lean mixture (λ≅1.3). The engine was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). All experiments were performed at 2000 rpm and 100 bar injection pressure. UV-visible 2D chemiluminescence was applied in order to study the flame front inception and propagation with particular interest in the early combustion stages. A bandpass filter allowed selecting luminous signal due to OH radicals.
Journal Article

Fuel Economy Improvement and Knock Tendency Reduction of a Downsized Turbocharged Engine at Full Load Operations through a Low-Pressure EGR System

2015-04-14
2015-01-1244
It is well known that the downsizing philosophy allows the improvement of Brake Specific Fuel Consumption (BSFC) at part load operation for spark ignition engines. On the other hand, the BSFC is penalized at high/full load operation because of the knock occurrence and of further limitations on the Turbine Inlet Temperature (TIT). Knock control forces the adoption of a late combustion phasing, causing a deterioration of the thermodynamic efficiency, while TIT control requires enrichment of the Air-to-Fuel (A/F) ratio, with additional BSFC drawbacks. In this work, a promising technique, consisting of the introduction of a low-pressure cooled exhaust gas recirculation (EGR) system, is analyzed by means of a 1D numerical approach with reference to a downsized turbocharged SI engine. Proper “in-house developed” sub-models are used to describe the combustion process, turbulence phenomenon and the knock occurrence.
Journal Article

Experimental and Numerical Study of the Water Injection to Improve the Fuel Economy of a Small Size Turbocharged SI Engine

2017-03-28
2017-01-0540
In this work, a promising technique, consisting of a liquid Water Injection (WI) at the intake ports, is investigated to overcome over-fueling and delayed combustions typical of downsized boosted engines, operating at high loads. In a first stage, experimental tests are carried out in a spark-ignition twin-cylinder turbocharged engine at a fixed rotational speed and medium-high loads. In particular, a spark timing and a water-to-fuel ratio sweep are both specified, to analyze the WI capability in increasing the knock-limited spark advance. In a second stage, the considered engine is schematized in a 1D framework. The model, developed in the GT-Power™ environment, includes user defined procedures for the description of combustion and knock phenomena. Computed results are compared with collected data for all the considered operating conditions, in terms of average performance parameters, in-cylinder pressure cycles, burn rate profiles, and knock propensity, as well.
Journal Article

Water Injection to Enhance Performance and Emissions of a Turbocharged Gasoline Engine under High Load Condition

2017-03-28
2017-01-0660
The potential benefits of water injection on performance and emissions were investigated on a downsized PFI twin-cylinder turbocharged spark ignition engine. Experiments were carried out at high load condition (~15.5 bar IMEP) within the engine speed range from 3500 to 4500rpm with a step of 500 rpm. For each test case the effect of the injected water quantity on combustion and exhaust emissions was investigated by sweeping from 10%w to 30%w the water to gasoline ratio. The water was injected at the same timing as the gasoline by a low pressure injection system external controlled. Tests were performed at WOT conditions exploring, for each operating condition, a spark sweep from knock-free up to knock-limited operation. Compared to the full gasoline reference case, the water injection allowed to advance extensively the spark timing without knock occurrence. The 20% water to gasoline mass fraction gave the best improvements in terms of IMEP.
Journal Article

A Modeling Study of Cyclic Dispersion Impact on Fuel Economy for a Small Size Turbocharged SI Engine

2016-10-17
2016-01-2230
In this paper, the results of an extensive experimental analysis regarding a twin-cylinder spark-ignition turbocharged engine are employed to build up an advanced 1D model, which includes the effects of cycle-by-cycle variations (CCVs) on the combustion process. Objective of the activity is to numerically estimate the CCV impact primarily on fuel consumption and knock behavior. To this aim, the engine is experimentally characterized in terms of average performance parameters and CCVs at high and low load operation. In particular, both a spark advance and an air-to-fuel ratio (α) sweep are actuated. Acquired pressure signals are processed to estimate the rate of heat release and the main combustion events. Moreover, the Coefficient of Variation of IMEP (CoVIMEP) and of in-cylinder peak pressure (CoVpmax) are evaluated to quantify the cyclic dispersion and identify its dependency on peak pressure position.
Journal Article

CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine

2016-04-05
2016-01-0601
The occurrence of knock is the most limiting hindrance for modern Spark-Ignition (SI) engines. In order to understand its origin and move the operating condition as close as possible to onset of this potentially harmful phenomenon, a joint experimental and numerical investigation is the most recommended approach. A preliminary experimental activity was carried out at IM-CNR on a 0.4 liter GDI unit, equipped with a flat transparent piston. The analysis of flame front morphology allowed to correlate high levels of flame front wrinkling and negative curvature to knock prone operating conditions, such as increased spark timings or high levels of exhaust back-pressure. In this study a detailed CFD analysis is carried out for the same engine and operating point as the experiments. The aim of this activity is to deeper investigate the reasons behind the main outcomes of the experimental campaign.
Journal Article

Water Injection: a Technology to Improve Performance and Emissions of Downsized Turbocharged Spark Ignited Engines

2017-09-04
2017-24-0062
Knock occurrence and fuel enrichment, which is required at high engine speed and load to limit the turbine inlet temperature, are the major obstacles to further increase performance and efficiency of down-sized turbocharged spark ignited engines. A technique that has the potential to overcome these restrictions is based on the injection of a precise amount of water within the mixture charge that can allow to achieve important benefits on knock mitigation, engine efficiency, gaseous and noise emissions. One of the main objectives of this investigation is to demonstrate that water injection (WI) could be a reliable solution to advance the spark timing and make the engine run at leaner mixture ratios with strong benefits on knock tendency and important improvement on fuel efficiency.
Journal Article

1D Simulation and Experimental Analysis of a Turbocharger Compressor for Automotive Engines under Unsteady Flow Conditions

2011-04-12
2011-01-1147
Turbocharging technique will play a fundamental role in the near future not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions both in Spark Ignition and diesel automotive applications. To achieve excellent engine performance for road application, it is necessary to overcome some typical turbocharging drawbacks i.e., low end torque level and transient response. Experimental studies, developed on dedicated test facilities, can supply a lot of information to optimize the engine-turbocharger matching, especially if tests can be extended to the typical engine operating conditions (unsteady flow). Different numerical procedures have been developed at the University of Naples to predict automotive turbocharger compressor performance both under steady and unsteady flow conditions. A classical 1D approach, based on the employment of compressor characteristic maps, was firstly followed.
Journal Article

Map-Based and 1D Simulation of a Turbocharger Compressor in Surging Operation

2011-09-11
2011-24-0126
One-dimensional (1D) models are commonly employed to study the performances of turbocharged engine. Manufacturers' provided steady turbomachinery maps are usually utilized, although they operate in unsteady conditions as a consequence of pressure pulses propagating into the intake and exhaust systems. This may lead to some inaccuracies in the engine-turbocharger matching calculations, which may be solved through the introduction of proper time-delays (virtual pipe corrections). These drawbacks, however, became more relevant when engine operates under low speed and high load conditions, or during a transient maneuver, because of possibilities of compressor surging.
Journal Article

Combined Effects of Valve Strategies, Compression Ratio, Water Injection, and Cooled EGR on the Fuel Consumption of a Small Turbocharged VVA Spark-Ignition Engine

2018-04-03
2018-01-0854
In this work, various techniques are numerically investigated to assess and quantify their relative effectiveness in reducing the Brake Specific Fuel Consumption (BSFC) of a downsized turbocharged spark-ignition Variable Valve Actuation (VVA) engine. The analyzed solutions include the Variable Compression Ratio (VCR), the port Water Injection (WI), and the external cooled Exhaust Gas Recirculation (EGR). The numerical analysis is developed in a 1D modeling framework. The engine is schematized in GT-Power™ environment, employing refined sub-models of the in-cylinder processes, such as the turbulence, combustion, knock, and heat transfer. The combustion and knock models have been extensively validated in previous papers, at different speed/load points and intake valve strategies, including operations with a relevant internal EGR rate and with liquid WI.
X