Refine Your Search

Topic

Author

Affiliation

Search Results

Video

DPF's Regeneration Procedures and Emissions with RME Blend Fuels

2012-06-18
The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene Diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of Diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: passive regenerations: DOC + CSF; CSF alone, active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.
Journal Article

Calibration and Validation of Various Commercial Particle Number Measurement Systems

2009-04-20
2009-01-1115
Measurement of particle number was introduced in the Euro 5/6 light duty vehicle emissions regulation. Although particle number measurement systems have to be calibrated by the manufacturers, labs have to validate the proper operation of their systems within one year of the emissions test. The systems must achieve a >99% reduction of an aerosol containing 30 nm tetracontane (CH3(CH2)38CH3) particles (C40) with an inlet concentration >104 #/cm3. They must also include an initial heated dilution stage with dilution of at least 10 which outputs a diluted sample at a temperature of 150°C–400°C. The system as a whole must achieve a particle number concentration reduction factor for particles of 30 nm and 50 nm electrical mobility diameters, that is no more than 30% and 20% respectively higher, and no more than 5% lower than that for particles of 100 nm.
Journal Article

Heavy Duty Particle Measurement Programme (PMP): Exploratory Work for the Definition of the Test Protocol

2009-06-15
2009-01-1767
The heavy duty Particle Measurement Programme (PMP) inter-laboratory exercise consists of three parts: 1) the exploratory work to refine the measurement protocol, 2) the validation exercise where each lab will measure the emissions of a “golden” engine with two “golden” particle number systems simultaneously sampling from full and partial flow dilution systems, and 3) the round-robin where the emissions of a “reference” engine will be determined with a lab’s own particle number instrumentation. This paper presents the results of the exploratory work and describes the final protocol for testing in the validation exercise (and round robin) along with the necessary facility modifications required for compliance with the protocol. Key aspects of the protocol (e.g. filter material, flow rates at the full and partial flow systems, the pre-conditioning etc.) are explained and justified.
Journal Article

Particle Emission Measurements from L-Category Vehicles

2015-09-06
2015-24-2512
In 2011 a particle number (PN) limit was introduced in the European Union's vehicle exhaust legislation for diesel passenger cars. The PN method requires measurement of solid particles (i.e. those that do not evaporate at 350 °C) with diameters above 23 nm. In 2013 the same approach was introduced for heavy duty engines and in 2014 for gasoline direct injection vehicles. This decision was based on a long evaluation that concluded that there is no significant sub-23 nm fraction for these technologies. In this paper we examine the suitability of the current PN method for L-category vehicles (two- or three-wheel vehicles and quadri-cycles). Emission levels of 5 mopeds, 9 motorcycles, 2 tricycles (one of them diesel) and 1 quad are presented. Special attention is given to sub-23 nm emission levels. The investigation was conducted with PN legislation compliant systems with particle counters measuring above 23 nm and 10 nm.
Journal Article

Engine Exhaust Solid Sub-23 nm Particles: I. Literature Survey

2014-10-13
2014-01-2834
In the current diesel vehicle exhaust emissions legislation Particle Number (PN) limits for solid particles >23 nm are prescribed. The legislation was extended to include Gasoline Direct Injection (G-DI) vehicles since September 2014. Target of this paper was to investigate whether smaller than 23 nm solid particles are emitted from engines in considerable concentration focusing on G-DI engines. The literature survey and the experimental investigation of >15 vehicles showed that engines emit solid sub-23 nm particles. The average percentage over a test cycle for G-DIs (30-40%) is similar to diesel engines. These percentages are relatively low considering the emission limit levels (6×1011 p/km) and the repeatability (10-20%) of the particle number method. These percentages are slightly higher compared to the percentages expected theoretically not to be counted due to the 23 nm cut-off size (5-15%).
Journal Article

Engine Exhaust Solid Sub-23 nm Particles: II. Feasibility Study for Particle Number Measurement Systems

2014-10-13
2014-01-2832
In the current heavy-duty engine and light-duty diesel vehicle exhaust emission legislation Particle Number (PN) limits for solid particles >23 nm are prescribed. The legislation was extended to include Gasoline Direct Injection (G-DI) vehicles since September 2014 and will be applied to Non-Road Mobile Machinery engines in the future. However there are concerns transferring the same methodology to other engine technologies, where higher concentration of sub-23 nm particles might exist. This paper focuses on the capabilities of existing PN measurement equipment on measuring solid particles smaller than 23 nm.
Technical Paper

Effects of Gasoline Vapour Pressure and Ethanol Content on Evaporative Emissions from Modern European Cars

2007-07-23
2007-01-1928
A test programme designed to investigate the influence of gasoline vapour pressure and ethanol content on evaporative emissions from modern passenger cars was carried out by the Joint Research Centre of the European Commission together with CONCAWE and EUCAR. Seven gasoline passenger cars representative of current EURO 3/4 emissions technology were tested for evaporative emissions with ten different test fuels. The test fuel matrix comprised 60 and 70 kPa hydrocarbon base fuels with 5 and 10% ethanol splash blends and 5 and 10% ethanol matched volatility blends. The test protocol was based on the European homologation test procedure. Although the test protocol turned out to have a significant influence on the results, the programme provided valuable information and it was possible to draw several clear conclusions.
Technical Paper

Diesel NO/NO2/NOX Emissions - New Experiences and Challenges

2007-04-16
2007-01-0321
During the VERT *) testing of different DPF systems it was remarked, that the oxidation catalyst converts sometimes a big part of NO to NO2, producing on the one hand a more toxic composition of the exhaust gases and causing on the other hand measuring artefacts, which tend to underestimate of NO2 and NOx by the cold NOx - measurement. The present work summarizes the experiences in this matter elaborated at the Laboratories for IC-Engines & Exhaust Emissions Control (AFHB) of the University of Applied Sciences Biel-Bienne, Switzerland, during several VERT activities and didactic projects on engine and chassis dynamometers in the years 2000-2006.
Technical Paper

(Nano) Particles from 2-S Scooters: SOF / INSOF; Improvements of Aftertreatment; Toxicity

2007-04-16
2007-01-1089
Limited and non-regulated emissions of scooters were analysed during several annual research programs of the Swiss Federal Office of Environment (BAFU) *). Small scooters, which are very much used in the congested centers of several cities, are a remarkable source of air pollution. Therefore every effort to reduce the emissions is an important contribution to improve the air quality in urban centers. In the present work detailed investigations of particle emissions of different 2-stroke scooters with direct injection and with carburettor were performed. The nanoparticulate emissions were measured by means of SMPS, (CPC) and NanoMet. Also the particle mass emission (PM) was measured with the same method as for Diesel engines. Extensive analyses of PM-residuum for SOF/INSOF, PAH and toxicity equivalence (TEQ), were carried out in an international project network. Particle mass emission (PM) of 2-S Scooters consists mostly of SOF.
Technical Paper

Retrofit Kit to Reduce NOX and PM Emissions from Diesel Engines using a Low-Pressure EGR and a DPF-System with FBC and Throttling for Active Regeneration without Production of Secondary Emissions

2008-04-14
2008-01-0330
This paper discusses the possibility of equipping Euro 3 and older vehicles with a universal retrofit kit to reduce the NOX and the PM emissions without producing any secondary effect. Out of several configurations, the optimal setup for EGR and DPF regeneration was evaluated and tested on a passenger car engine testbench. Stationary results showed that with a low pressure EGR it was possible to reduce the NOX emissions by more than 50%, and the filtration efficiency of the DPF was greater than 99%. After various dynamic tests on the test bench to improve the control algorithm, the system was designed to be installed on a garbage truck.
Technical Paper

Catalyst Aging and Effects on Particle Emissions of 2-Stroke Scooters

2008-04-14
2008-01-0455
An active oxidation catalyst is an efficient measure to reduce not only gaseous components (CO, HC), but also particle emissions (mostly oil condensates) of a small 2-stroke engine with lost oil lubrication. Since the 2- and 3-wheelers with 2-stroke propulsion are still a very serious source of air pollution worldwide in many urban areas, it is important to have a look on some consequences of an improperly working catalyst. The present paper shows some results of user-oriented aging of catalyst on the vehicle and results of limited emissions and unlimited (nano)particles during the catalysts screening tests. The works are a part of an international scooter network project, which was performed (2004 to 2007) in the Laboratories for IC-Engines & Exhaust Emission Control of the University of Applied Sciences, Biel, Switzerland with main support of the Swiss Federal Office of Environment (BAFU), Swiss Petrol Union (EV) and Swiss Lubes (VSS).
Technical Paper

Nanoparticle Filtration for Vehicle Cabins

2008-04-14
2008-01-0827
A filter system is presented which allows the reduction of the concentration of ultrafine particles in vehicle cabins to very low levels. The original ventilation system is switched to the recirculation mode and all cabin intake air is supplied via a retrofitted filter system. Tests with a variety of different vehicles (from passenger cars to coaches) show the efficiency of the system.
Technical Paper

Release of Fiber Fragments from Fiber-Based Ceramic Honeycomb Filters and Substrates-Methods and Results

2009-04-20
2009-01-1520
Advances in emission control technologies have demanded development of new ceramic chemistries and improved microstructures in catalytic substrates and especially in diesel particulate filters. High porosity filters are desirable, as they decrease engine backpressure and enable application of advanced catalysts including, but not limited to, multi-functional filters (MFF). A significant recent development has been in the use of ceramic fibers to create cross-linked microstructures in extruded honeycomb ceramics. This development allows high porosities to be attained while maintaining mechanical strength. However, according to the World Health Organization, certain classes of ceramic fibers are considered to have adverse health effects if released in air and inhaled.
Technical Paper

Combinations of Technical Measures for Reduction of Particle Emissions & Toxicity of 2-S Scooters

2009-04-20
2009-01-0689
2- and 3-wheelers with 2-S propulsion are still a very serious source of air pollution worldwide in many urban areas. Therefore, every effort to reduce the emissions of those vehicles is an important contribution to improve the air quality. In the present work detailed investigations of regulated emissions and of particle emissions of 2-stroke scooters with direct injection and with carburator were performed. To demonstrate the emission reduction potentials some possibilities of emission improvements were grouped into steps. These technical measures were: ○ Higher tier lube oils ○ Lower oil dosing ○ Active oxidation catalyst ○ Supplementary filtration & oxidation devise (WFC) **) ○ Special fuel. Particle mass and nanoparticles (number), which are amply present in 2-stroke exhaust gas and which contribute strongly to the toxicity level are still unlimited by the international exhaust gas legislation. They were extensively investigated in the present project series.
Technical Paper

Comparison of Particle Number Measurements from the Full Dilution Tunnel, the Tailpipe and Two Partial Flow Systems

2010-04-12
2010-01-1299
The regulation of particle number (PN) has been introduced in the Euro 5/6 light-duty vehicle legislation, as a result of the light duty inter-laboratory exercise of the Particle Measurement Program (PMP). The heavy-duty inter-laboratory exercise investigates whether the same or a similar procedure can be applied to the heavy-duty regulation. In the heavy-duty exercise two "golden" PN systems sample simultaneously; the first from the full dilution tunnel and the second from the partial flow system. One of the targets of the exercise is to compare the PN results from the two systems. In this study we follow a different approach: We use a PMP compliant system at different positions (full flow, partial flow and tailpipe) and we compare its emissions with a "reference" system always sampling from the full flow dilution tunnel.
Technical Paper

Features of the Particulate Emission and Regenerations of Different DPF's on a Detroit Diesel 2-Stroke Bus Engine

2004-03-08
2004-01-0825
Different Diesel Particle Filters (DPF)*) were tested on a 2-Stroke Detroit-Diesel bus engine 6V 92 TA. The investigations focused on soot burden and regeneration of the DPF with special filter materials. Also examined was promoting the regeneration by: throttling, additive (FBC), oxidation catalytic converter upstream of DPF and the catalytic coating of the filter material. The metrics were the particulate matter emission, its composition and the nanoparticles. The most important results are: The average SOF content in the engine exhaust particulate matter is 77.6 % and the majority of it is emitted as bigger droplets The wire-mesh filter catalyst (WFC) - a novel emission reduction technology -substantially curtails the SOF and PM. WFC traps and oxidizes the oil droplets and produces a “dry” soot. This can be very advantageous for the DPF downstream of WFC. (WFC can be also very interesting for 2-S gasoline engines).
Technical Paper

Emissions of small 2S-SI-Engine for Handheld Machinery-Nanoparticulates & Particulate Matter

2001-12-01
2001-01-1830
1 Small off-road 2-stroke SI-engines have very high pollutant emissions. The Swiss environmental protection agency (BUWAL) investigates the state of the technology and emissions with the scope to show the potential of improvements by means of the best available technology (BAT) and to motivate the consumers to use the more sophisticated equipment and cleaner fuels to protect their health and the environment. In the present work emission measurements of chainsaws were performed with a special concern of particulate emissions. Particulates were analysed by means of: gravimetry, SMPS, NanoMet and differential analysis of filter residue. The varied conditions were: A/F-ratio, lube-oil content and the fuel quality. It has been shown, that the particulate mass and the nanoparticle numbers, which both consisting almost exclusively of unburned lube-oil, attain very high values. They are strongly influenced by the mixture tuning and by the lube-oil content.
Technical Paper

Nanoparticle Emissions of DI Gasoline Cars with/without GPF

2017-03-28
2017-01-1004
In the present paper some results of investigations of nanoparticles from five DI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, five variants of “vehicle - GPF” were investigated. These results originate from the project GasOMeP (Gasoline Organic & Metal Particulates), which focused on metal-nanoparticles (including sub 20nm) from gasoline cars with different engine technologies. The PN-emission level of the investigated GDI cars in WLTC without GPF is in the same range of magnitude very near to the actual limit value of 6.0 × 1012 #/km. With the GPF’s with better filtration quality, it is possible to lower the emissions below the future limit value of 6.0 × 1011 #/km. There is no visible nuclei mode and the ultrafine particle concentrations below 10mm are insignificant. Some of the vehicles show at constant speed operation a periodical fluctuation of the NP-emissions, as an effect of the electronic control.
Technical Paper

Diesel Emission with DPF+SCR in VERTdePN - Testing & Potentials

2011-04-12
2011-01-1139
The most efficient way and the best available technology (BAT) to radically reduce the critical diesel emission components particles (PM&NP) and nitric oxides (NOx) are combined exhaust gas aftertreatment systems (DPF+SCR). SCR (selective catalytic reduction) is regarded as the most efficient deNOx-system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles. The presented results are part of the work in the international network project VERT *) dePN (de-activation, de-contamination, disposal of particles and NOx), which has the objectives to establish test procedures and quality standards and to introduce the SCR-, or combined DPF+SCR-systems in the VERT verification procedure.
Technical Paper

Influences of Different Exhaust Filter Configurations on Emissions of a 2-Stroke Scooter Peugeot TSDI

2011-09-11
2011-24-0203
Exhaust emissions measurements of a small 2-S Scooter Peugeot TSDI*), 50cc with different particle filters have been performed in this present work according to the measuring procedures, which were established in the previous research in the Swiss Scooter Network, [1, 2, 3, 4, 5, 6, 7, 8, 9]. The investigated particle filtration materials were supplied from different manufacturers as samples without specifications and they were applied by the research laboratory in a special muffler able to be taken apart. The investigated scooter represented a modern (2002) 2-stroke technology with direct injection, with oxidation catalyst and with injection of the lube oil to the intake air. Since there is a special concern about the particle emissions of the small engines, the particle mass and nanoparticle measurements were systematically carried out. The nanoparticulate emissions were measured by means of SMPS (CPC) and NanoMet*).
X