Refine Your Search

Topic

Author

Search Results

Journal Article

Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger

2009-09-13
2009-24-0122
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

2011-04-12
2011-01-0880
For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Technical Paper

Onboard Diagnosis of Engine Misfires

1990-09-01
901768
The integrity of the exhaust emission system in a passenger vehicle can best be maintained by monitoring its performance continuously on board the vehicle. It is with the intent of monitoring emission system performance that the California Air Resources Board has proposed regulations which will require vehicles to be equipped with on-board monitoring systems. These proposed regulations are known as OBDII and will probably be followed by similar Federal EPA regulations.This paper discusses a method of monitoring engine misfire as part of the OBDII requirements for passenger vehicle on-board diagnostics. The method is relatively inexpensive in that it uses an existing sensor for measuring instantaneous crankshaft angular position, and utilizes electronic signal processing which can be implemented in relatively inexpensive custom integrated circuits.
Technical Paper

Model Based Fault Diagnosis for Engine under Speed Control

2007-04-16
2007-01-0775
An appropriate fault diagnosis and Isolation (FDI) strategy is very useful to prevent system failure. In this paper, a model-based fault diagnosis strategy is developed for an internal combustion engine (ICE) under speed control. Engine throttle fault and the manifold pressure sensor fault are detected and isolated. A nonlinear observer based residual generation approach is proposed. Manifold pressure and throttle are observed. Fault codes are designed with redundancy to prevent bit error. Performance of fault diagnosis strategy has been evaluated with simulations.
Technical Paper

Cleaner Diesel Using Model-Based Design and Advanced Aftertreatment in a Student Competition Vehicle

2008-04-14
2008-01-0868
Traditionally in the United States, Diesel engines have negative connotations, primarily due to their association with heavy duty trucks, which are wrongly characterized as “dirty.” Diesel engines are more energy efficient and produce less carbon dioxide than gasoline engines, but their particulate and NOx emissions are more difficult to reduce than spark ignition engines. To tackle this problem, a number of after-treatment technologies are available, such as Diesel Lean NOx Traps (LNTs)), which reduces oxides of nitrogen, and the Diesel particulate filter (DPF), which reduces particulate matter. Sophisticated control techniques are at the heart of these technologies, thus making Diesel engines run cleaner. Another potentially unattractive aspect of Diesel engines is noise.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

An Improved Design of a Vehicle Based Off-Road Terrain Profile Measurement System

2008-10-07
2008-01-2655
This paper discusses an improved design of a vehicle-based mobile off-road terrain profile measurement system. The proposed system includes an apparatus of sensors and on-board data acquisition hardware, equipped on a platform vehicle used to measure and record the relevant data while the vehicle travels through the off-road or terrain surface to be surveyed. A unique post-processing algorithm is then used to derive the elevation profile based on the collected data. The derived elevation profile data could be used to characterize the roughness of an off-road testing course or perform a general geographical survey or mapping. The major technical issue addressed in this system is to eliminate the effect of platform vehicle vibration on sensor measurement which if left unaddressed will result in large measurement error due to high amplitude pitch and roll movements of the platform vehicle.
Technical Paper

Derivation and Validation of New Analytical Planar Models for Simulating Multi-Axle Articulated Vehicles

2004-03-08
2004-01-1784
This paper discusses the derivation and validation of planar models of articulated vehicles that were developed to analyze jackknife stability on low-μ surfaces. The equations of motion are rigorously derived using Lagrange's method, then linearized for use in state-space models. The models are verified using TruckSim™, a popular nonlinear solid body vehicle dynamics modeling package. The TruckSim™ models were previously verified using extensive on-vehicle experimental data [1, 2]. A three-axle articulated model is expanded to contain five axles to avoid lumping the parameters for the drive and semitrailer tandems. Compromises inherent in using the linearized models are discussed and evaluated. Finally, a nonlinear tire cornering force model is coupled with the 5-axle model, and its ability to simulate a jackknife event is demonstrated. The model is shown to be valid over a wide range of inputs, up to and including loss of control, on low-and-medium-μ surfaces.
Technical Paper

Design Optimization of Heavy Vehicles by Dynamic Simulations

2002-11-18
2002-01-3061
Building and testing of physical prototypes for optimization purposes consume significant amount of time, manpower and financial resources. Mathematical formulation and solution of vehicle multibody dynamics equations are also not feasible because of the massive size of the problem. This paper proposes a methodology for vehicle design optimization that does not involve physical prototyping or exhaustive mathematics. The proposed method is fast, cost effective and saves considerable manpower. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) and a flexible architecture to explore large design spaces.
Technical Paper

Model-Based Component Fault Detection and Isolation in the Air-Intake System of an SI Engine Using the Statistical Local Approach

2003-03-03
2003-01-1057
The stochastic Fault Detection and Isolation (FDI) algorithm, known as the statistical local approach, is applied in a model-based framework to the diagnosis of component faults in the air-intake system of an automotive engine. The FDI scheme is first presented as a general methodology that permits the detection of faults in complex nonlinear systems without the need for building inverse models or numerous observers. Although sensor and actuator faults can be detected by this FDI methodology, component faults are generally more difficult to diagnose. Hence, this paper focuses on the detection and isolation of component faults for which the local approach is especially suitable. The challenge is to provide robust on-board diagnostics regardless of the inherent nonlinearities in a system and the random noise present.
Technical Paper

Empirical Models for Commercial Vehicle Brake Torque from Experimental Data

2003-03-03
2003-01-1325
This paper introduces a new series of empirical mathematical models developed to characterize brake torque generation of pneumatically actuated Class-8 vehicle brakes. The brake torque models, presented as functions of brake chamber pressure and application speed, accurately simulate steer axle, drive axle, and trailer tandem brakes, as well as air disc brakes (ADB). The contemporary data that support this research were collected using an industry standard inertia-type brake dynamometer, routinely used for verification of FMVSS 121 commercial vehicle brake standards.
Technical Paper

The 2002 Ohio State University FutureTruck - The BuckHybrid002

2003-03-03
2003-01-1269
This year, in the third year of FutureTruck competition, the Ohio State University team has taken the challenge to convert a 2002 Ford Explorer into a more fuel efficient and environmentally friendly SUV. This goal was achieved by use of a post-transmission, charge sustaining, parallel hybrid diesel-electric drivetrain. The main power source is a 2.5-liter, 103 kW advanced CIDI engine manufactured by VM Motori. A 55 kW Ecostar AC induction electric motor provides the supplemental power. The powertrain is managed by a state of the art supervisory control system which optimizes powertrain characteristics using advanced energy management and emission control algorithms. A unique driver interface implementing advanced telematics, and an interior designed specifically to reduce weight and be more environmentally friendly add to the utility of the vehicle as well as the consumer appeal.
Technical Paper

A Statistical Approach to Assess the Impact of Road Events on PHEV Performance using Real World Data

2011-04-12
2011-01-0875
Plug in hybrid electric vehicles (PHEVs) have gained interest over last decade due to their increased fuel economy and ability to displace some petroleum fuel with electricity from power grid. Given the complexity of this vehicle powertrain, the energy management plays a key role in providing higher fuel economy. The energy management algorithm on PHEVs performs the same task as a hybrid vehicle energy management but it has more freedom in utilizing the battery energy due to the larger battery capacity and ability to be recharged from the power grid. The state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining overall fuel consumption.
Technical Paper

Effect of Traffic, Road and Weather Information on PHEV Energy Management

2011-09-11
2011-24-0162
Energy management plays a key role in achieving higher fuel economy for plug-in hybrid electric vehicle (PHEV) technology; the state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining the fuel consumed. The energy management algorithm should be designed to meet all driving scenarios while achieving the best possible fuel economy. The knowledge of the power requirement during a driving trip is necessary to achieve the best fuel economy results; performance of the energy management algorithm is closely related to the amount of information available in the form of road grade, velocity profiles, trip distance, weather characteristics and other exogenous factors. Intelligent transportation systems (ITS) allow vehicles to communicate with one another and the infrastructure to collect data about surrounding, and forecast the expected events, e.g., traffic condition, turns, road grade, and weather forecast.
Technical Paper

Fabrication of a Parallel-Series PHEV for the EcoCAR 2 Competition

2013-10-14
2013-01-2491
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes. This is made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 51 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the fabrication and control implementation process followed by the Ohio State team during Year 2 of the competition. The fabrication process includes finalizing designs based on identified requirements, building and assembling components, and performing extensive validation testing on the mechanical, electrical and control systems.
Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

Integrated Design of Control and Diagnostics for Air and Fuel Management System in SI Engines

1998-02-23
980520
The use of mathematical models derived from physical principles is gaining more widespread acceptance for automotive control and diagnostic applications. A suitable mathematical model may reduce, though not eliminate, the need for empirical calibrations, and may help in accommodating changes in operating conditions, external disturbances, vehicle to vehicle variability, aging etc. Recent studies have shown that model based approaches for both control and diagnostic design offer a viable alternative to empirical methods for industrial applications. However, until recently, model-based control and diagnostic algorithms have been designed separately, without considering their interactions explicitly. As a consequence, the performance of these algorithms may be limited, and even deteriorated in the presence of modeling uncertainty and disturbance.
Technical Paper

Island Concept EVT

2006-10-16
2006-01-3260
This paper presents an all-wheel-drive (AWD) hybrid electric vehicle (HEV) design approach for extreme off-road applications. The paper focuses on the powertrain design, modeling, simulation, and performance analysis. Since this project focuses on a military-type application, the powertrain is designed to enhance crew survivability and provide several different modes of limp-home operation by utilizing a new vehicle topology -herein referred to as the island topology. This topology consists of designing the vehicle such that the powertrain and other equipment and subsystems surround the crew compartment to provide a high level of protection against munitions and other harmful ordnance. Thus, in the event of an external shield penetration, the crew compartment remains protected by the surrounding equipment - which serves as a secondary shield.
X