Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Development of a Low Pressure Direct Injection System for a Small 2S Engine. Part II - Experimental Analysis of the Engine Performance and Pollutant Emissions

2015-04-14
2015-01-1730
High specific fuel consumption and pollutant emissions are the main drawbacks of the small crankcase-scavenged two-stroke engine. The symmetrical port timing combined with a carburetor or an indirect injection system leads to a lower scavenging efficiency than a four-stroke engine and to the short-circuit of fresh air-fuel mixture. The use of fuel supply systems as the indirect injection and the carburetor is the standard solution for small two-stroke engine equipment, due to the necessity of reducing the complexity, weight, overall dimensions and costs. This paper presents the results of a detailed study on the application of an innovative Low Pressure Direct Injection system (LPDI) on an existing 300 cm3 cylinder formerly equipped with a carburetor. The proposed solution is characterized by two injectors working at 5 bar of injection pressure.
Technical Paper

Detection of Cylinder-to-Cylinder Injection Variation in a Four-Stroke Diesel Engine by Monitoring the Turbocharger Speed

2015-11-17
2015-32-0761
In order to ensure a high level of performance and to comply with more severe limitations in term of fuel consumption and emissions reduction, a continuous supervision of the engine operating conditions, by monitoring several parameters, is needed. The growing use of turbocharger (TC) in ICE for automotive and industrial applications suggests to use the TC speed as a possible feedback of engine operating condition. Indeed, the turbocharger behavior is connected to the thermo-dynamic and fluid-dynamic conditions at the engine cylinder exit: this feature suggests that the turbocharger speed could give useful information about the engine cycle. In previous studies, a preliminary investigation of the relationship between the engine performance and the turbocharger speed of a four-stroke multi-cylinder turbo-diesel engine was carried out by varying the operating conditions of the engine such as fuel mass flow rate, EGR rate and back pressure at the turbine outlet.
Technical Paper

CFD Analysis of the Effect of the Injection Pressure on a Small 2S LPDI Engine

2015-11-17
2015-32-0760
The paper investigates the influence of the fuel injection pressure on a small two-stroke engine with low pressure direct injection (LPDI). The authors in previous studies showed the benefits of the LPDI system in reducing the fuel short circuit, both from an experimental and numerical point of view. As a direct consequence, both the specific fuel consumption and the pollutant emissions were notably reduced, reaching the typical performance of a standard four-stroke engine of comparable size. The main drawback of the system is the limited time at disposal for delivering the fuel with difficulties in achieving a satisfactory air-fuel mixing and homogenization as well as fuel vaporization. In order to overcome the aforementioned issues, a detailed numerical analysis is carried out by performing a wide set of CFD simulations to properly investigate and understand the many complex phenomena occurring during the interaction between the injected fuel and the fresh scavenging air.
Technical Paper

Improvement of the Specific Fuel Consumption at Partial Load in SI Engines by Design Strategies based on High Compression Ratio

2014-11-11
2014-32-0060
In the last years, the engineering in the automotive industry is revolutionized by the continuous research of solutions for the reduction of consumptions and pollutant emissions. On this topic maximum attention is paid by both the legislative bodies and the costumers. The more and more severe limitations in pollutant and CO2 emissions imposed by international standards and the increasing price of the fuel force the automotive research to more efficient and ecological engines. Commonly the standard approach for the definition of the engine parameters at the beginning of the design process is based on the wide-open throttle condition although, both in homologation cycles and in the daily usage of the scooters, the engines work mainly at partial load where the efficiency dramatically decreases. This aspect has recently become strongly relevant also for two wheeled vehicles especially for urban purpose.
Technical Paper

On the Effect of the Injector Position on Fuel-Air Mixture Preparation in a Two-Stroke GDI Engine

2018-10-30
2018-32-0040
Modern injection systems are characterized by low cost, light weight and diversified components based on a mature technology. In addition, the constant growth of computational resources allows an in-depth understanding and control of the injection process. In this scenario, increasing interest is presently being paid to understand if an application of such technologies to small two-stroke engines could lead to a return to popularity in place of the more widespread use of the four-stroke engine. Indeed, the possibility of achieving a drastic reduction of both specific fuel consumption and pollutant emissions would completely reverse the future prospect of the two-stroke engine. The authors in previous studies developed a low pressure direct injection (LPDI) system for a 300 cm3 two-stroke engine that was ensuring a performance consistent with a standard four-stroke engine of similar size.
Technical Paper

Experimental Investigation on the Potentiality of a GDI System Applied to a Two-Stroke Engine: Analysis on Pollutant Emission and Fuel Consumption Reduction

2018-10-30
2018-32-0047
The small two-stroke engine represents a strategic typology of propulsion system for applications in which lightweight and high power density are required. However, the conventional two-stroke engine will not be compliant with forthcoming legislations about pollutant emissions and new solutions, such as electrification, are seriously taken into account by industry to overcome the two-stroke engine drawbacks. In this scenario, a promising way to allow the two-stroke engine to be competitive is represented by the use of direct injection systems, in order to overcome the long-standing issue of short circuiting fuel. The authors in previous studies developed a low-pressure direct injection (LPDI) system for a 300 cm3 two-stroke engine that was ensuring the same power output of the engine in carbureted configuration and raw pollutant emissions consistent with a four-stroke engine of similar performance.
Journal Article

Development of a Low Pressure Direct Injection System for a Small 2S Engine. Part I - CFD Analysis of the Injection Process

2015-04-14
2015-01-1727
High specific fuel consumption and pollutant emissions are the main drawbacks of the small crankcase-scavenged two-stroke engine. The symmetrical port timing combined with a carburetor or an indirect injection system leads to a lower scavenging efficiency than a four-stroke engine and to the short-circuit of fresh air-fuel mixture. The use of fuel supply systems as the indirect injection and the carburetor is the standard solution for small two-stroke engine equipment, due to the necessity of reducing the complexity, weight, overall dimensions and costs. This paper presents the results of a detailed study on the application of an innovative Low Pressure Direct Injection system (LPDI) on an existing 300 cm3 cylinder formerly equipped with a carburetor. The proposed solution is characterized by two injectors working at 5 bar of injection pressure.
Journal Article

Development of a Non-Conventional Two Stroke Small Engine for Scooter Applications

2010-09-28
2010-32-0016
The purpose of this work is to perform an analysis on the modifications necessary to convert a four-stroke engine into a non-conventional two-stroke engine. The first aim of this work is to reach the theoretical advantages of the two stroke engine (high torque values at lower rpm and working regularity) and, at the same time, to avoid the usual problems of the two stroke cycle (short-circuit of fresh air-fuel mixture and consequently pollutant emissions and high specific fuel consumption). The target is to develop a small engine with innovative solutions that allows to obtain high performance coupled with good mechanical and thermodynamic efficiency. The starting base engine is a 125cc four-stroke two-valves scooter engine equipped with a volumetric compressor. The idea is to convert it from four to two stroke cycle, using head valves and adding scavenge ports in the cylinder.
X